• 제목/요약/키워드: nano composites

검색결과 644건 처리시간 0.019초

폐윤활유를 이용한 아스팔트 실란트 (Asphalt Sealant Containing the Waste Lubricant Oil)

  • 김석준;고금진
    • Elastomers and Composites
    • /
    • 제44권1호
    • /
    • pp.69-75
    • /
    • 2009
  • 본 연구에서는 폐윤활유를 이용하여 아스팔트 포장도로의 균열 보수에 주로 사용하는 아스팔트 실란트를 제조하였다. 아스팔트(AP-5), SBS 삼블록 공중합체(triblock copolymer), 점착제(석유수지) 및 산화방지제를 폐윤활유와 혼합하여 콘 침입도, 연화점, 신도, 흐름성, 인장 접착 신율 및 원상회복률을 측정하였다. 폐윤활유 함량이 증가함에 따라 아스팔트 실란트의 콘 침입도는 증가하였고 연화점, 신도 및 원상회복률은 감소하였다. 증량제로 탈크를 첨가할 경우 함량에 비례하여 연화점 및 원상회복률은 증가하였으나 콘 침입도, 신도 및 인장 접착 신율은 감소하였다. 석유수지 함량을 크게 줄여 ASTM 규격에 적합하면서도 가장 경제적인 균열 보수용 아스팔트 실란트를 제조할 수 있었다.

Influence of Nano-Cellulose Dispersant on the Vulcanization Characteristics, Viscoelastic Properties, and Mechanical Properties of Silica-SBR Compounds

  • Kim, Jung Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • 제55권3호
    • /
    • pp.215-221
    • /
    • 2020
  • Silica/SBR (styrene-butadiene rubber) compounds are the primary constituents of tire treads. Furthermore, the excellent dynamic viscoelastic properties of silica lead to good fuel efficiencies. However, the silanol group on the surface of silica does not mix well with non-polar rubber because of its polarity. This incompatibility causes aggregation due to the occurrence of hydrogen bonding between the hydroxyl groups, thereby reducing the dispersibility of silica. Recently, the wet master batch (WMB) process has been applied to overcome these disadvantages, and research on silica dispersants that can be used in the WMB process has been increasing. In this study, we prepared silica/SBR compounds by using three types of eco-friendly cellulose-based dispersants in the WMB process, namely: cellulose-, sodium carboxymethyl cellulose, and nanocellulose-based dispersants. Subsequently, we compared the vulcanization characteristics, viscoelastic properties, and mechanical properties of the compounds. The silica dispersibility in the rubber compounds was improved with the addition of the nano-cellulose dispersant, resulting in the enhancement of the workability, hardness, tensile strength, and wear resistance of the SBR compound.

Dynamic Mechanical Properties of Natural Fiber/Polymer Biocomposites: The Effect of Fiber Treatment with Electron Beam

  • Han, Young-Hee;Han, Seong-Ok;Cho, Dong-Hwan;Kim, Hyung-Il
    • Macromolecular Research
    • /
    • 제16권3호
    • /
    • pp.253-260
    • /
    • 2008
  • Environmentally friendly biocomposites were made using plant-based natural fibers, such as henequen and kenaf. The natural fiber reinforced polypropylene (PP) and unsaturated polyester (UP) biocomposites were examined in terms of the reinforcing effect of natural fibers on thermoplastic and thermosetting polymers. Kenaf (KE) and henequen (HQ) fibers were treated with an electron beam (EB) of 10 and 200 kGy doses, respectively, or with a 5 wt% NaOH solution. Four types of biocomposites (KE/PP, HQ/PP, KE/UP and HQ/UP) were fabricated by compression molding and each biocomposite was characterized by dynamic mechanical analysis and thermogravimetric analysis. The kenaf fiber had the larger reinforcing effect on the dynamic mechanical properties of both PP and UP biocomposites than the henequen fiber. The highest storage modulus was obtained from the biocomposite with the combination of UP matrix and 200 kGy EB treated kenaf fibers.

MoS2 Layers Decorated RGO Composite Prepared by a One-Step High-Temperature Solvothermal Method as Anode for Lithium-Ion Batteries

  • Liu, Xuehua;Wang, Bingning;Liu, Jine;Kong, Zhen;Xu, Binghui;Wang, Yiqian;Li, Hongliang
    • Nano
    • /
    • 제13권11호
    • /
    • pp.1850135.1-1850135.8
    • /
    • 2018
  • A one-step high-temperature solvothermal approach to the synthesis of monolayer or bilayer $MoS_2$ anchored onto reduced graphene oxide (RGO) sheet (denoted as $MoS_2/RGO$) is described. It was found that single-layered or double-layered $MoS_2$ were synthesized directly without an extra exfoliation step and well dispersed on the surface of crumpled RGO sheets with random orientation. The prepared $MoS_2/RGO$ composites delivered a high reversible capacity of $900mAhg^{-1}$ after 200 cycles at a current density of $200mAg^{-1}$ as well as good rate capability as anode active material for lithium ion batteries. This one-step high-temperature hydrothermal strategy provides a simple, cost-effective and eco-friendly way to the fabrication of exfoliated $MoS_2$ layers deposited onto RGO sheets.

Service Life Prediction of Marine Rubber Fender

  • Woo, Chang-Su;Park, Hyun-Sung;Sung, Il-Kyung;Yun, Soon-Hwan;Lee, Jae-Moon
    • Elastomers and Composites
    • /
    • 제54권1호
    • /
    • pp.70-76
    • /
    • 2019
  • The function and purpose of the marine rubber fender, to prevent the damage of the ship and the mooring while the ship is being attached to the pier. However, maintenance of the fender after installation is not enough, because it is generally handled as an attachment facility. Estimation the life of a marine rubber fender is important in the maintenance of a port. When manufacturers design and produce marine rubber fenders, they do so according to various conditions such as the reaction force acting on the hull and docking vessel and deformation after absorbing the kinetic energy of the ship. In this study, a method for predicting and evaluating service life from the product design and development stage was established, in order to evaluate the durability of the marine rubber fenders. The SSp-300H and HSP-300H models were used to predict the service life. The method developed in this study, is expected to predict the service life of the marine rubber fender accurately and in a comparatively shorter time, thereby contributing to the evaluation standard and quality stability of the product.

Coating Performance of SiO2 / Epoxy Composites as a Corrosion Protector

  • Rzaij, Dina R.;Ahmed, Nagham Y.;Alhaboubi, Naseer
    • Corrosion Science and Technology
    • /
    • 제21권2호
    • /
    • pp.111-120
    • /
    • 2022
  • To solve the corrosion problem of industrial equipment and other constructions containing metals, corrosion protection can be performed by using coating which provides a barrier between the metal and its environment. Coatings play a significant role in protecting irons and steels in harsh marine and acid environments. This study was conducted to identify an anti-corrosive epoxy coating for carbon steel composite with 0.1, 0.3, and 0.5 wt% concentrations of nanoparticles of SiO2 using the dip-coating method. The electrochemical behavior was analyzed with open circuit potential (OCP) technics and polarization curves (Tafle) in 3.5 wt% NaCl and 5 vol% H2SO4 media. The structure, composition, and morphology were characterized using different analytical techniques such as X-ray Diffraction (XRD), Fourier Transform Infrared spectrum (FT-IR), and Scanning Electron Microscopy (SEM). Results revealed that epoxynano SiO2 coating demonstrated a lower corrosion rate of 2.51 × 10-4 mm/year and the efficiency of corrosion protection was as high as 99.77%. The electrochemical measurement showed that the nano-SiO2 / epoxy coating enhanced the anti-corrosive performance in both NaCl and H2SO4 media.

Vibration control, energy harvesting and forced vibration of the piezoelectric NEMS via paradox-free local/nonlocal theory

  • Zohre Moradi;Farzad Ebrahimi;Mohsen Davoudi
    • Advances in nano research
    • /
    • 제14권4호
    • /
    • pp.335-353
    • /
    • 2023
  • The possibility of energy harvesting as well as controlled vibration of a three-layered beam consisting of two piezoelectric layer and one core layer made of nonpiezoelectric material is investigated using paradox-free local/nonlocal theory. The three-layered nanobeam is resting on an elastic foundation and subjected to a blast load. Also, the core layer is made of Nano-composites reinforced by CNTs and carbon fibers (MHCD). Governing equations as well as boundary conditions are obtained using Hamilton,s principle. The equations discretized by Generalized Differential Quadrature Method (GDQM) and solved by Newmark beta method. In addition, two differential and integral gains are employed for controlling the forced vibration. The size-dependency of the elastic foundation is considered using two-phase elasticity. The effect of elastic foundation, control gains, nonlocal factor, as well as parameters affecting the core material on the forced vibration and energy harvesting is investigated in detail. The equations as well as solution procedure is validated utilizing some compassion studies. This work can be a basis for future studies on energy harvesting and controlled vibration in small scales.

강자성체와 나노사이즈의 프러시안 블루가 합성된 새로운 형태의 복합체 제조 및 최적의 적용 조건 도출 (Manufacture of Novel Composites Synthesized with Ferromagnetic and Nano-Sized Prussian Blue and D eriving Optimum Conditions)

  • 김종규
    • 한국재료학회지
    • /
    • 제33권4호
    • /
    • pp.151-158
    • /
    • 2023
  • In this study, a new type of composite material combined with carbonyl iron, a relatively strong ferromagnetic material, was prepared to overcome the current application limitations of Prussian blue, which is effective in removing radioactive cesium. The surface of the prepared composite was analyzed using SEM and XRD, and it was confirmed that nano-sized Prussian Blue was synthesized on the particle surface. In order to evaluate the cesium removal ability, 0.2 g of the composite prepared for raw cesium aquatic solution at a concentration of 5 ㎍ was added and reacted, resulting in a cesium removal rate of 99.5 %. The complex follows Langmuir's adsorption model and has a maximum adsorption amount (qe) of 79.3 mg/g. The Central Composite Design (CCD) of the Response Surface Method (RSM) was used to derive the optimal application conditions of the prepared composite. The optimal application conditions achieved using Response optimization appeared at a stirring speed of pH 7, 17.6 RPM. The composite manufactured through this research is a material that overcomes the Prussian Blue limit in powder form and is considered to be excellent economically and environmentally when applied to a cesium removal site.

나노허니컴 구조물을 이용한 산업용 극소수성 표면 제작 (Superhydrophobic Engineered Surface Based on Nanohoneycomb Structures)

  • 김동현;박현철;이건홍;황운봉
    • Composites Research
    • /
    • 제20권2호
    • /
    • pp.17-20
    • /
    • 2007
  • Oxalic acid를 이용한 양극산화기법과 테플론 담금법을 이용하여 극소수성 나노/마이크로 구조물을 복제하였다. 이때 nanoscale hole의 사이즈는 양극산화시의 전압과 양극산화시간에 의해 결정된다. nanoscale에서 분자들 사이에 영향을 미치는 Van der Waals interactions에 의해서 복제 중 polymer sticking 현상이 발생한다. 이는 복제된 나노 구조물들이 서로 들러붙고 구부러지고 침강시키는 작용을 하게 된다. 이러한 현상이 microstructures위에 nanostructures가 존재하는 hierarchical structure가 생성되게 하며, 이러한 구조물은 연꽃잎의 미세구조물과 유사한 특성을 보인다. 즉 제작된 극소수성 나노/마이크로 구조물 표면은 접촉각이 $160^{\circ}{\sim}170^{\circ}$정도로 나타내고 또한 $1^{\circ}$미만의 sliding angle을 나타낸다.

Effect of Silica Nanoparticles on Tear Strength of CR Compounds: A Comparison Study between the ASTM D470 and DIN VDE 0472-613

  • Changsin Park;Byeong-Rea Son;Gi-Bbeum Lee;Changwoon Nah
    • Elastomers and Composites
    • /
    • 제59권1호
    • /
    • pp.34-41
    • /
    • 2024
  • In this study, the effects of the type and content of silica on the mechanical and tear properties of chloroprene rubber (CR), which is mainly used as a jacket material for mining cables, were studied. The crosslinking density (ΔM) and reinforcing factor (αf) defined using cure characteristics increased with increasing silica content, whereas the cure rate decreased. The hardness, tensile strength, and modulus of the CR compounds increased depending on the silica content and structural development. The reinforcing behavior of the silica-filled CR compounds according to the silica type and content showed the best fit with the Thomas equation of the predictive model. Tear strength was evaluated using two standard test methods, ASTM D470 and DIN VDE 0472-613, and the results were compared. The tear strength increased as the silica content increased, regardless of the test method, and the different tear strengths obtained by the two standard test methods showed a linear relationship with each other, indicating a high correlation.