• Title/Summary/Keyword: nano composites

Search Result 644, Processing Time 0.027 seconds

Transparent Conducting Film for Flat Panel Display using CNT by Electrospinning

  • Moon, Jin-San;Park, Jae-Hong;Han, Jae-Hee;Berdinsky, Alexander S.;Nam, Jae-Do;Lee, Dae-Hoi;Yoo, Ji-Beom
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.978-980
    • /
    • 2004
  • We report the preparation and properties of polymer paste solutions with CNTs using conventional paste forming process. Electrospinning has been used for the fabrication of nano-fiber composite. In this process, dispersion of CNTs is very important matter. So, we emphasize the necessity of dispersion of CNTs in the solution and investigate effects of process parameters of electrospinning. The advantage of simple electrospinning process will be discussed..

  • PDF

Technical Status of Carbon Nanotubes Composites (탄소나노튜브 복합체의 기술동향)

  • Lee, Jong-Il;Jung, Hee-Tae
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.7-14
    • /
    • 2008
  • Carbon nanotubes are considered as the most ideal nano filler in the field of composites with their excellent electrical, mechanical, and thermal properties. Therefore carbon nanotubes composites are increasingly utilized in conductive materials, structural material with high strength and low weight and multifunctional material. This review article describes recent research trend of carbon nanotubes synthesis, modification, various properties of the carbon nanotubes composites and their application. Furthermore the future development direction for the commercialization of carbon nanotubes composites is proposed.

The effect of nanoparticles on enhancement of the specific mechanical properties of the composite structures: A review research

  • Arani, Ali Ghorbanpour;Farazin, Ashkan;Mohammadimehr, Mehdi
    • Advances in nano research
    • /
    • v.10 no.4
    • /
    • pp.327-337
    • /
    • 2021
  • In this review, composite structures are used for many industries for at least four decades. Polymeric composites are one of the important structures in the aerospace and aviation industry because of their high strength and low weight. In this comprehensive review, mechanical behaviors, physical and mechanical properties of polymeric composites, different types of reinforcements, different methods to fabricate polymeric composites, historical structural composite materials for aviation and aerospace industries, and also different methods for the characterization are reported. How to use various methods of composite preparation using different nanofillers as reinforcements and its effect on the physical properties and mechanical behavior of composites are discussed as well.

Fabrication and sintering of nano $TiN_x$ and its composites (Nano $TiN_x$와 그 복합체의 제조 및 소결)

  • Kim, Dong-Sik;Kim, Sung-Jin;Rahno, Khamidova;Park, Sung-Bum;Park, Seung-Sik;Lee, Hye-Jeong;Lee, Sang-Woo;Cho, Kyeong-Sik;Woo, Heung-Sik;Ahn, Joong-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.3
    • /
    • pp.101-105
    • /
    • 2006
  • We fabricated the nano $TiN_x$ by making of reaction between titanium powder and $Si_3N_4$ during planetary milling. The $TiN_x$ powder was sintered by spark plasma sintering machine after mixing with 50 wt% of titanium powder, and the sintered body was heat-treated at $850^{\circ}C$ in order to investigate its hardness property at the elevated temperature. We analyzed crystal structure by XRD. We observed the peaks of $TiN_{0.26}$ and TiN after 10 hours milling, and we observed TiN peak mainly after 20 hours milling. The reacted particle size distribution was investigated by FE-SEM. Increase of milling time, the size of reacted particles was decreased and the $10{\sim}20nm$ size of $TiN_x$ on the surface of titanium and $TiN_x$ was observed after 20 hours milling. The micro-Vickers hardness of mixed sintered body was about $1050kgf/mm^2$.

Syntheses and Characterizations of Polymer-Ceramic Composites Having Increased Hydrophilicity, Air-Permeability, and Anti-Fungal Property (친수성, 통기성 및 항균성이 향상된 고분자-세라믹 복합소재의 제조 및 물성)

  • Cho, Hyung-Joon;Jung, Dong-Woon
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.137-141
    • /
    • 2010
  • Generally, polymer materials are not air-permeable and hydrophilic. In addition, they do not possess anti-fungal property. Hydrophilicity, air-permeability, and anti-fungal properties of new composites consisting of polymer, ceramic nanoparticles, and silver ion were investigated by contact angle measurements, air permeation time, and cell culture. The hydrophilic, air-permeable, and anti-fungal composites can be used in health care industry.

Fe-Based Nano-Structured Powder Reinforced Zr-Based Bulk Metallic Glass Composites by Powder Consolidation

  • Cho, Seung-Mok;Han, Jun-Hyun;Lee, Jin-Kyu;Kim, Yu-Chan
    • Korean Journal of Materials Research
    • /
    • v.19 no.9
    • /
    • pp.504-509
    • /
    • 2009
  • The Zr-based bulk metallic glass matrix composites of a mixture of gas-atomized metallic glass powders and Fe-based nanostructured powders were fabricated by spark plasma sintering. The Fe-based nanostructured powders adopted for the enhancement of plasticity were well distributed in the matrix after consolidation, and the matrix remains as a fully amorphous phase. The successful consolidation of metallic glass matrix composite with high density was attributed to viscous flow in the supercooled liquid state during spark plasma sintering. Unlike other amorphous matrix composites, in which improved ductility could be obtained at the expense of their strength, the developed composite exhibited improvement both in strength and ductility. The ductility improvement in the composite was considered to be due to the formation of multiple shear bands under the presence of the Fe-based nanostructured particles.

Study of Anti-bacterial Properties for Impregnated Activated Carbon by Silver Nano-particles (은나노 입자가 첨착된 활성탄의 항균특성에 관한 연구)

  • Lee, Chul-Jae;Kim, Dong-Yeub;Kim, Byung-So
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.396-399
    • /
    • 2007
  • In present work, the anti-bacterial effect of silver/activated carbon (Ag/C) composites prepared by the ${\gamma}$-irradiation of $AgNO_3$ solution on Escherichia coli (E. coli) has been studied. Characteristics of the Ag/C composites were identified by scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic absorption spectroscopy (AAS). The inhibitory concentration of E. coli was found to be 0.387 ppm and the sterilizing concentration for the tested organism was 1.017 ppm. These results support the evidence that Ag/C composites have strong antibacterial activity to E. coli.

An experimental study of the friction and wear on counterpart roughness of silica particle reinforced nano composites (상대재의 거칠기에 따른 실리카 입자강화 나노 복합재료의 마찰 및 마모에 관한 실험적 연구)

  • Kim, Hyung Jin;Lee, Jung-Kyu;Koh, Sung Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.2
    • /
    • pp.162-168
    • /
    • 2014
  • The friction and wear characteristics of the rubber matrix composites filled with nano sized silica particles were investigated at ambient temperature by pin-on-disc friction test. The volume fraction of silica particles was 19%. The cumulative wear volume and wear rate of these materials on counterpart roughness were determined experimentally. The major failure mechanisms were lapping layers, deformation of matrix, ploughing, debonding of particles, fracture of particles and microcracking by scanning electric microscopy photograph of the tested surface. The cumulative wear volume showed a tendency to increase with increase of sliding distance. The wear rate of these composites tested indicated low value as increasing the sliding distance.

Electroconductive Graphene-Combined Polycaprolactone Electrospun Films for Biological Applications (생체적 적용을 위한 전기전도성을 갖는 그래핀과 폴리카프로락톤 복합물질 전기방사 섬유형 필름)

  • Oh, Jun-Sung;Lee, Eun-Jung
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.278-285
    • /
    • 2021
  • This study produces electroconductive polycaprolactone (PCL)-based film with different amounts of graphene (G) through electrospinning, and the characteristics of the produced G/PCL composites are investigated. The G/PCL results are analyzed by comparing them with those obtained using pure PCL electrospun film as a control. The morphology of electrospun material is analyzed through scanning electron microscopy and transmission electron microscopy. Mechanical and electrical properties are also evaluated. Composites containing 1 % graphene have the highest elongation rate, and 5 % samples have the highest strength and elasticity. Graphene contents > 25 % show electro-conductivity, which level improves with increase of graphene content. Biological characteristics of G/PCL composites are assessed through behavioral analysis of neural cell attachment and proliferation. Cell experiments reveal that compositions < 50 % show slightly reduced cell viability. Moreover, graphene combinations facilitated cell proliferation compared to pure PCL. These results confirm that a 25 % G/PCL composition is best for application to systems that introduce external stimuli such as electric fields and electrodes to lead to synergistic efficiency of tissue regeneration.

Synthesis of LaMnO3-Diamond Composites and Their Photocatalytic Activity in the Degradation of Weak Acid Red C-3GN

  • Huang, Hao;Lu, Benqian;Liu, Yuanyuan;Wang, Xeuqian;Hu, Jie
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850121.1-1850121.11
    • /
    • 2018
  • In this study, a series of $LaMnO_3$-diamond composites with varied $LaMnO_3$ mass contents supported on micro-diamond have been synthesized using a sol-gel method. The as-prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and the Fourier transform infrared spectra (FTIR). Meanwhile, the photocatalytic performances were also tested by photoluminescence (PL) spectroscopy, ultraviolet-visible diffuse reflection spectra (UV-Vis DRS) and the degradation of weak acid red C-3GN (RC-3GN). Results show that the peak position of $LaMnO_3$ is shifted to low angle after the introduction of diamond, and perovskite particles uniformly distributed on the surface of diamond, forming a network structure, which can increase the active sites and the absorption of dye molecules. When the mass ratio of $LaMnO_3$ and diamond is 1:2 (LMO-Dia-2), the composite shows the most excellent photocatalytic activity. This result offers a sample route to enlarge the range of the application of micro-diamond and provide a new carrier for perovskite photocatalysts.