Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.5.278

Electroconductive Graphene-Combined Polycaprolactone Electrospun Films for Biological Applications  

Oh, Jun-Sung (Department of Nano-Biomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University)
Lee, Eun-Jung (Department of Nano-Biomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University)
Publication Information
Korean Journal of Materials Research / v.31, no.5, 2021 , pp. 278-285 More about this Journal
Abstract
This study produces electroconductive polycaprolactone (PCL)-based film with different amounts of graphene (G) through electrospinning, and the characteristics of the produced G/PCL composites are investigated. The G/PCL results are analyzed by comparing them with those obtained using pure PCL electrospun film as a control. The morphology of electrospun material is analyzed through scanning electron microscopy and transmission electron microscopy. Mechanical and electrical properties are also evaluated. Composites containing 1 % graphene have the highest elongation rate, and 5 % samples have the highest strength and elasticity. Graphene contents > 25 % show electro-conductivity, which level improves with increase of graphene content. Biological characteristics of G/PCL composites are assessed through behavioral analysis of neural cell attachment and proliferation. Cell experiments reveal that compositions < 50 % show slightly reduced cell viability. Moreover, graphene combinations facilitated cell proliferation compared to pure PCL. These results confirm that a 25 % G/PCL composition is best for application to systems that introduce external stimuli such as electric fields and electrodes to lead to synergistic efficiency of tissue regeneration.
Keywords
graphene; electroconductive; polycaprolactone; electrospinning; neural cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Duda, L. Dreyer, P. Behrens, S. Wienecke, T. Chakradeo, B. Glasmacher and K. Haastert-Talini, BioMed Res. Int., 2014, 835269 (2014).   DOI
2 S. Agarwal and S. Jiang, Encyclopedia of Polymeric Nanomaterials, p. 1, Springer, Berlin, Heidelberg (2014).
3 C. Grochowski, E. Radzikowska and R. Maciejewski, Clin. Neurol. Neurosurg., 173, 8 (2018).   DOI
4 I. M. Pereira, A. Marote, A. J. Salgado and N. A. Silva, Pharmaceuticals, 12, (2019).
5 M. P. Prabhakaran, J. Venugopal, C. K. Chan and S. Ramakrishna, Nanotechnology, 19, 455102 (2008).   DOI
6 M. Jahromi, S. Razavi and A. Bakhtiari, J. Tissue Eng. Regener. Med., 13, 2077 (2019).   DOI
7 L. Dvali and S. Mackinnon, Clin. Plast. Surg., 30, 203 (2003).   DOI
8 P. Konofaos and J. P. V. Halen, J. Reconstr. Microsurg., 29, 149 (2013).   DOI
9 S. Blacher, V. Maquet, F. Schils, D. Martin, J. Schoenen, G. Moonen, R. Jerome and J. P. Pirard, Biomaterials, 24, 1033 (2003).   DOI
10 S. K. Dhirendra, V. Rajesh and S. Kirubanandan, Curr. Top. Med. Chem., 8, 341 (2008).   DOI
11 S. Wang, J. Qiu, W. Guo, X. Yu, J. Nie, J. Zhang, X. Zhang, Z. Liu, X. Mou, L. Li and H. Liu, Adv. Biosyst., 1, 1600042 (2017).   DOI
12 A. Greiner and J. H. Wendorff, Angew. Chem. Int. Ed. Engl., 46, 5670 (2007).   DOI
13 D. P. Bhattarai, L. E. Aguilar, C. H. Park and C. S. Kim, Membranes (Basel)., 8, 62 (2018).   DOI
14 R. C. Thomson, M. J. Yaszemski, J. M. Powers and A. G. Mikos, Biomaterials, 19, 1935 (1998).   DOI
15 F. Wang, Y. Wu and Y. Huang, Compos. Appl. Sci. Manuf., 110, 126 (2018).   DOI
16 F. Liu, X. Wang, T. Chen, N. Zhang, Q. Wei, J. Tian, Y. Wang, C. Ma and Y. Lu, J. Adv. Res., 21, 91 (2020).   DOI
17 R. G. Bai, N. Ninan, K. Muthoosamy and S. Manickam, Prog. Mater. Sci., 91, 24 (2018).   DOI
18 G. Savini and R. L. Orefice, J. Mater. Res. Technol., 9, 16387 (2020).   DOI
19 V. Lundin, A. Herland, M. Berggren, E. W. H. Jager and A. I. Teixeira, PLOs ONE, 6, e18624 (2011).   DOI
20 V. Palmieri, F. Sciandra, M. Bozzi, M. D, Spirito and M. Papi, Front. Bioeng. Biotechnol., 8, 383 (2020).   DOI
21 M. Hakamada, T. Kuromura, Y. Chen, H. Kusuda and M. Mabuchi, Mater. Trans., 48, 32 (2007).   DOI
22 M. Srikanth, R. Asmatulu, K. Cluff and L. Yao, ACS Omega, 4, 5044 (2019).   DOI
23 P. Chen, A. E. Rodda, H. C. Parkington and J. S. Forsythe, Electrospun Materials for Tissue Engineering and Biomedical Applications, p. 299, Woodhead Publishing (2017).
24 P. Ginestra, J. Mech. Behav. Biomed. Mater., 100, 103387 (2019).   DOI