• Title/Summary/Keyword: nano $SiO_2$

Search Result 576, Processing Time 0.033 seconds

Simulation of Quantum Effects in the Nano-scale Semiconductor Device

  • Jin, Seong-Hoon;Park, Young-June;Min, Hong-Shick
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.1
    • /
    • pp.32-40
    • /
    • 2004
  • An extension of the density-gradient model to include the non-local transport effect is presented. The governing equations can be derived from the first three moments of the Wigner distribution function with some approximations. A new nonlinear discretization scheme is applied to the model to reduce the discretization error. We also developed a new boundary condition for the $Si/SiO_2$ interface that includes the electron wavefunction penetration into the oxide to obtain more accurate C-V characteristics. We report the simulation results of a 25-nm metal-oxide-semiconductor field-effect transistor (MOSFET) device.

Statistical Characterization Fabricated Charge-up Damage Sensor

  • Samukawa Seiji;Hong, Sang-Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.3
    • /
    • pp.87-90
    • /
    • 2005
  • $SiO_2$ via-hole etching with a high aspect ratio is a key process in fabricating ULSI devices; however, accumulated charge during plasma etching can cause etching stop, micro-loading effects, and charge build-up damage. To alleviate this concern, charge-up damage sensor was fabricated for the ultimate goal of real-time monitoring of accumulated charge. As an effort to reach the ultimate goal, fabricated sensor was used for electrical potential measurements of via holes between two poly-Si electrodes and roughly characterized under various plasma conditions using statistical design of experiment (DOE). The successful identification of potential difference under various plasma conditions not only supports the evidence of potential charge-up damage, but also leads the direction of future study.

Class Strengthening by Crystallization with Femto Second Laser Pulse (극초단파레이저를 활용한 결정화에 의한 유리의 강도 증진)

  • Moon P. Y.;Lee K. T.;Yoon D. K.;Ryu B. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.171-174
    • /
    • 2005
  • To improve the strength of glass is being studied in order to contribute to weight saving of flat panel displays. Generally, the strength achieved of glass-ceramics is higher as is the fracture toughness by the formation of a heterogeneous Phase inside glass. In this study, Ag-doped $45SiO_2-24CaO-24Na_2O-4P_2O_5$ glasses were irradiated to strengthen by crystallization using femto-second laser pulse. UV/VIS, Spectroscope, XRD, nano-indenter and SEM etc. irradiation of laser pulse without heat-treated samples was analyzed. Samples irradiated by laser had higher value$(4.4\~4.56{\ast}10-3Pa)$ of elastic modulus which related with strength of glass than values heat-treated samples and these are $1.2\~1.5$ times higher values than them of mother glass. This process can be applicable to the strengthening of thinner glass plate, and it has an advantage over traditional heat-treatment and ion-exchange method.

  • PDF

Study on Poly(3,4-ethylenedioxythiophene) Thin Film Vapour Phase-Polymerized with Iron(III)Tosylate on AcOH-Catalyzed 3-Aminopropyltriethoxysilane Self-Assembled Monolayer

  • Choi, Sangil;Kim, Wondae;Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.5 no.4
    • /
    • pp.233-236
    • /
    • 2012
  • In this study, PEDOT thin films polymerized with Iron(III)tosylate ($Fe(PTS)_3$) and grown on acetic acid-catalyzed 3-aminopropyltriethoxysilane self-assembled monolayer (APS-SAM) surfaces by VPP method have been investigated. PEDOT thin films were synthesized on APS self-assembled $SiO_2$ wafer surface at two different concentrations (20 wt% and 40 wt%) and growth time (3 and 30 minutes), and then they were compared. PEDOT vapour phase-polymerized with 40 wt% $Fe(PTS)_3$ oxidant completely formed a thin film on acetic acid-catalyzed APS-SAM surface while with 20 wt% $Fe(PTS)_3$ did not at all. It means that the oxidant can be uniformly coated on acetic acid-catalyzed APS-SAM surface at the 40 wt% concentration, which gives rise to the uniform growth of PEDOT thin film on it.

Development of High-Quality Poly(3,4-ethylenedioxythiophene) Electrode Pattern Array Using SC1 Cleaning Process (SC1 세척공정을 이용한 고품질 Poly(3,4-ethylenedioxythiophene) 전극 패턴 어레이의 개발)

  • Choi, Sangil;Kim, Wondae;Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.4 no.4
    • /
    • pp.311-314
    • /
    • 2011
  • Application of self-assembled monolayers (SAMs) to the fabrication of organic thin film transistor has been recently reported very often since it can help to provide ohmic contact between films as well as to form simple and effective electrode pattern. Accordingly, quality of these ultra-thin films is becoming more imperative. In this study, in order to manufacture a high quality SAM pattern, a hydrophobic alkylsilane monolayer and a hydrophilic aminosilane monolayer were selectively coated on $SiO_2$ surface through the consecutive procedures of a micro-contact printing (${\mu}CP$) and dip-coating methods under extremely dry condition. On a SAM pattern cleaned with SC1 solution immediately after ${\mu}CP$, poly(3,4-ethylenedioxythiophene) (PEDOT) source and drain electrode array were very selectively and nicely vapour phase polymerized. On the other side, on a SC1-untreated SAM pattern, PEDOT array was very poorly polymerized. It strongly suggests that the SC1 cleaning process effectively removes unwanted contaminants on SAM pattern, thereby resulting in very selective growth of PEDOT electrode pattern.

Development of Wastewater Treatment System by Energy-Saving Photocatalyst Using Combination of Solar Light, UV Lamp and $TiO_2$ (태양광/자외선/이산화티타늄($TiO_2$)을 이용한 에너지 절약형 광촉매 반응 처리시스템 개발)

  • 김현용;양원호
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.1
    • /
    • pp.51-61
    • /
    • 2003
  • Pollution purification using titanium dioxide (TiO$_2$) photocatalyst has attracted a great deal of attention with increasing number of relent environmental problems. Currently, the application of TiO$_2$ photocatalyst has been focused on purification and treatment of waste water. However. the use of conventional TiO$_2$ powder photocatalyst results in disadvantage of stirring during the reaction and of separation after the reaction. And the usage of artificial UV lamp has made the cost of photocatalyst treatment system high. Consequently, we herein studied the pilot-scale design to aid in optimization of the energy-saving process for more through development and reactor design by solar light/UV lamp/ TiO$_2$system. In this study, we manufactured the TiO$_2$sol by sol-gel method. According to analysis by XRD, SEM and TEM, characterization of TiO$_2$ sol were nano-size (5-6 nm) and anatase type. Inorganic binder (SiO$_2$) was added to TiO$_2$ lot to be coated for support strongly, and support of ceramic bead was used to lower separation rate that of glass bead The influences were studied of various experimental parameters such as TiO$_2$ quantity, pH, flow rate. additives, pollutants concentration, climate condition and reflection plate by means of reaction time of the main chararteristics of the obtained materials. In water treatment system, variable realtor as solar light/ or UV lamp according to climate condition such as sunny and cloudy days treated the phenol and E-coli(Escherichia coli) effectively.

Surface modification and induced ultra high surface hardness by nitrogen ion implantation of low alloy steel

  • Olofinjana, A.O.;Bell, J.M.;Chen, Z.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.157-158
    • /
    • 2002
  • A surface hardenable low alloy carbon steel was implanted with medium energy (20 - 50KeV) $N_2^+$ ions to produced a modified hardened surface. The implantation conditions were varied and are given in several doses. The surface hardness of treated and untreated steels were measured using depth sensing ultra micro indentation system (UMIS). It is shown that the hardness of nitrogen ion implanted steels varied from 20 to 50GPa depending on the implantation conditions and the doses of implantation. The structure of the modified surfaces was examined by X-ray photoelectron spectroscopy (XPS). It was found that the high hardness on the implanted surfaces was as a result of formation of non-equilibrium nitrides. High-resolution XPS studies indicated that the nitride formers were essentially C and Si from the alloy steel. The result suggests that the ion implantation provided the conditions for a preferential formation of C and Si nitrides. The combination of evidences from nano-indentation and XPS, provided a strong evidence for the existence of $sp^3$ type of bonding in a suspected $(C,Si)_xN_y$ stoichiometry. The formation of ultra hard surface from relatively cheap low alloy steel has significant implication for wear resistance implanted low alloy steels.

  • PDF

Miniature Ultrasonic and Tactile Sensors for Dexterous Robot

  • Okuyama, Masanori;Yamashita, Kaoru;Noda, Minoru;Sohgawa, Masayuki;Kanashima, Takeshi;Noma, Haruo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.215-220
    • /
    • 2012
  • Miniature ultrasonic and tactile sensors on Si substrate have been proposed, fabricated and characterized to detect objects for a dexterous robot. The ultrasonic sensor consists of piezoelectric PZT thin film on a Pt/Ti/$SiO_2$ and/or Si diaphragm fabricated using a micromachining technique; the ultrasonic sensor detects the piezoelectric voltage as an ultrasonic wave. The sensitivity has been enhanced by improving the device structure, and the resonant frequency in the array sensor has been equalized. Position detection has been carried out by using a sensor array with high sensitivity and uniform resonant frequency. The tactile sensor consists of four or three warped cantilevers which have NiCr or $Si:B^+$ piezoresistive layer for stress detection. Normal and shear stresses can be estimated by calculation using resistance changes of the piezoresitive layers on the cantilevers. Gripping state has been identified by using the tactile sensor which is installed on finger of a robot hand, and friction of objects has been measured by slipping the sensor.

Properties of TiO2 Thin Films Deposited on PET Substrate for High Energy Density Capacitor (고에너지밀도 캐패시터를 위해 PET 기판에 증착한 TiO2 박막의 특성)

  • Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.409-415
    • /
    • 2012
  • $TiO_2$ thin films for high energy density capacitors were prepared by r.f. magnetron sputtering at room temperature. Flexible PET (Polyethylene terephtalate) substrate was used to maintain the structure of the commercial film capacitors. The effects of deposition pressure on the crystallization and electrical properties of $TiO_2$ films were investigated. The crystal structure of $TiO_2$ films deposited on PET substrate at room temperature was unrelated to deposition pressure and showed an amorphous structure unlike that of films on Si substrate. The grain size and surface roughness of films decreased with increasing deposition pressure due to the difference of mean free path. X-ray photoelectron spectroscopy (XPS) analysis revealed the formation of chemically stable $TiO_2$ films. The dielectric constant of $TiO_2$ films was significantly changed with deposition pressure. $TiO_2$ films deposited at low pressure showed high dissipation factor due to the surface microstructure. The dielectric constant and dissipation factor of films deposited at 70 mTorr were found to be 100~120 and 0.83 at 1 kHz, respectively. The temperature dependence of the capacitance of $TiO_2$ films showed the properties of class I ceramic capacitors. $TiO_2$ films deposited at 10~30 mTorr showed dielectric breakdown at applied voltage of 7 V. However, the films of 500~300 nm thickness deposited at 50 and 70 mTorr showed a leakage current of ${\sim}10^{-8}{\sim}10^{-9}$ A at 100 V.

Dry Etching Characteristics of Indium Zinc Oxide Thin Films in Adaptive Coupled Plasma

  • Woo, Jong-Chang;Choi, Chang-Auck;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.4
    • /
    • pp.216-220
    • /
    • 2013
  • The etching characteristics of indium zinc oxide (IZO) in $Cl_2/Ar$ plasma were investigated, including the etch rate and selectivity of IZO. The IZO etch rate showed non-monotonic behavior with increasing $Cl_2$ fraction in the $Cl_2/Ar$ plasma, and with increasing source power, bias power, and process pressure. In the $Cl_2/Ar$ (75:25%) gas mixture, a maximum IZO etch rate of 87.6 nm/min and etch selectivity of 1.09 for IZO to $SiO_2$ were obtained. Owing to the relatively low volatility of the by-products formation, ion bombardment was required, in addition to physical sputtering, to obtain high IZO etch rates. The chemical state of the etched surfaces was investigated with X-ray photoelectron spectroscopy. These data suggested that the IZO etch mechanism was ion-enhanced chemical etching.