• 제목/요약/키워드: naive Bayes

검색결과 238건 처리시간 0.021초

머신러닝 기반 체지방 측정정보를 이용한 고콜레스테롤혈증 예측모델 (Prediction model of hypercholesterolemia using body fat mass based on machine learning)

  • 이범주
    • 문화기술의 융합
    • /
    • 제5권4호
    • /
    • pp.413-420
    • /
    • 2019
  • 본 연구의 목적은 기존의 body fat mass 변수와 고콜레스테롤혈증의 연관성연구를 벗어나, 머신러닝기법을 기반으로 body fat mass 변수들의 조합을 이용하여 고콜레스테롤혈증 예측 모델을 개발하는 것이다. 이러한 연구를 위하여 국민건강영양조사 데이터를 기반으로 두 가지 variable selection 메소드와 머신러닝 알고리즘을 이용하여 총 6개의 모델을 생성하였고 질병 예측력을 비교분석하였다. 여러 body fat mass 관련 변수들 중에서 몸통지방량 변수가 고콜레스테롤혈증 예측력이 가장 우수한 변수인 것을 밝혀내었고, 머신러닝 기반 예측모델들 중에서 correlation-based feature subset selection 기반 naive Bayes 알고리즘을 이용한 모델이 0.739의 the area under the receiver operating characteristic curve 값과 0.36의 Matthews correlation coefficient 값을 얻었다. 이러한 연구의 결과는 향후 국내외 대규모 스크리닝 및 대중보건 연구에서 질병예측분야의 중요정보로 활용될 것으로 예상한다.

대학생 중도탈락 예방을 위한 기계 학습 기반 추천 시스템 구현 방안 (Implementation of a Machine Learning-based Recommender System for Preventing the University Students' Dropout)

  • 정도헌
    • 한국융합학회논문지
    • /
    • 제12권10호
    • /
    • pp.37-43
    • /
    • 2021
  • 본 연구는 대학생의 중도탈락 패턴을 식별하는 효과적인 자동 분류 기법을 제안하고, 이를 바탕으로 중도탈락을 예방하기 위한 지능형 추천 시스템의 구현 방안을 제시하는 것을 목표로 한다. 이를 위해 1) 실제 대학생의 재학/제적 데이터를 기반으로 기계 학습의 성능을 향상시킬 수 있는 데이터 처리 방안을 제안하고, 2) 5종의 기계학습 알고리즘을 이용하여 성능 비교 실험을 실시하였다. 3) 실험 결과, 제안 기법이 베이스라인에 비해 모든 알고리즘에서 우수한 성능을 보여주었다. 제적생의 식별 정확률(precision)은 랜덤 포레스트(Random Forest)를 사용할 때 최대 95.6%, 제적생의 재현율(recall)은 나이브 베이즈(Naive Bayes)를 사용할 때 최대 80.0%로 측정되었다. 4) 마지막으로, 실험 결과를 바탕으로 중도탈락 가능성이 높은 학생을 우선 상담하는 추천 시스템의 활용 방안을 제시하였다. 교육 현안 문제를 해결하기 위해 IT 분야의 기술을 활용하는 융합 연구를 통해 합리적인 의사결정을 수행할 수 있음을 확인하였으며 향후 지속적인 연구를 통해 다양한 인공지능 기술을 적용하고자 한다.

다중소스 데이터 융합 기반의 가스 누출 예측을 위한 선형 보간 및 머신러닝 기법 (Linear interpolation and Machine Learning Methods for Gas Leakage Prediction Base on Multi-source Data Integration)

  • 홍고르출;조겨리;김미혜
    • 한국융합학회논문지
    • /
    • 제13권3호
    • /
    • pp.33-41
    • /
    • 2022
  • 본 논문에서는 다중 요인을 고려한 천연 가스 누출 정도 예측을 위해 관련 요인을 포함하는 기상청 자료와 천연가스 누출 자료를 통합하고, 요인 분석을 기반으로 중요 특성을 선택하는 머신러닝 기법을 제안한다. 제안된 기법은 3단계 절차로 구성되어 있다. 먼저, 통합 데이터 셋에 대해 선형 보간법을 수행하여 결측 데이터를 보완하는 전처리를 수행한다. 머신러닝 모델 학습 최적화를 위해 OrdinalEncoder(OE) 기반 정규화와 함께 요인 분석을 사용하여 필수 특징을 선택하며, 데이터 셋은 k-평균 클러스터링으로 레이블을 지정한다. 최종적으로 K-최근접 이웃, DT(Decision Tree), RF(Random Forest), NB(Naive Bayes)의 네 가지 알고리즘을 사용하여 가스 누출 수준을 예측한다. 제안된 방법은 정확도, AUC, 평균 표준 오차(MSE)로 평가되었으며, 테스트 결과 OE-F 전처리를 수행한 경우 기존 기법에 비해 성공적으로 개선되었음을 보였다. 또한 OE-F 기반 KNN(OE-F-KNN)은 95.20%의 정확도, 96.13%의 AUC, 0.031의 MSE로 비교 알고리즘 중 최고 성능을 보였다.

데이터마이닝을 이용한 심혈관질환 판별 모델 방법론 연구 (A study of methodology for identification models of cardiovascular diseases based on data mining)

  • 이범주
    • 문화기술의 융합
    • /
    • 제8권4호
    • /
    • pp.339-345
    • /
    • 2022
  • 심혈관 질환은 전 세계적으로 주요 사망원인들 중 하나이다. 본 연구는 보다 우수한 심혈관질환 판별 모델을 생성하기 위한 방법에 대한 연구로써, 3가지 변수 선택법과 7가지 머신러닝 알고리즘을 바탕으로 사회인구학적 변수들을 이용하여 고혈압과 이상지질혈증 판별모델들을 생성하고, 생성된 모델들의 성능을 비교 평가한다. 본 연구의 결과에서는 두 가지 질병 모두에서, 전체변수 및 correlation-based feature subset selection 메소드 기반 모델들에서는 naive Bayes 모델이 다른 머신러닝을 이용한 모델들보다 다소 우수한 판별 성능이 있는 것으로 나타났고, wrapper 메소드 기반 변수 선택법에서는 logistic regression 모델이 다른 모든 모델보다 성능이 다소 우수한 것으로 나타났다. 본 연구의 결과는 원격의료 및 대중보건 분야에서 향후 한국인의 심혈관질환 판별 및 예측 모델 생성을 위한 참고자료로 활용될 수 있을 것으로 기대된다.

소셜 미디어 앱 리뷰에서의 감성 분석 연구: 인스타그램 중심으로 (Research on Sentiment Analysis in Social Media App Reviews: Focusing on Instagram)

  • 이문기;우위항
    • 감성과학
    • /
    • 제27권1호
    • /
    • pp.69-80
    • /
    • 2024
  • 본 연구는 Google Play에서 수집된 Instagram 사용자 리뷰에 대한 심층 분석을 통해, 이 연구는 애플리케이션의 성능과 사용자 만족도에 대한 중요한 통찰력을 얻고자 한다. 텍스트 마이닝과 감성 분석 기술을 활용하여 사용자 리뷰에 담긴 감성과 의견을 체계적으로 파악하며, 이를 통해 앱의 개선점과 사용자 경험을 깊이 이해하려고 한다. 인스타그램 리뷰가 사용자들의 다양한 경험을 어떻게 반영하는지, 그리고 앱의 장단점을 어떻게 드러내는지를 분석한다. 이를 위해 나이브 베이즈 알고리즘을 사용한 감성 분석을 수행하며, 이 결과는 인스타그램 서비스 개선에 도움이 될 것으로 기대된다. 연구는 또한 개발자들이 사용자 피드백을 더 잘 이해하고 활용하는 데 도움을 주며, 결국 사용자 만족도를 향상시키는 데 기여할 것으로 예상된다. 이 연구는 소셜 미디어 사용 패턴과 사용자 의견의 복잡한 관계를 탐색하고, 이를 통해 더 나은 사용자 경험을 제공하는 방안을 모색한다.

NB 모델을 이용한 형태소 복원 (Morpheme Recovery Based on Naïve Bayes Model)

  • 김재훈;전길호
    • 정보처리학회논문지B
    • /
    • 제19B권3호
    • /
    • pp.195-200
    • /
    • 2012
  • 한국어는 교착어이어서 형태소 분석 없이 품사 부착이 어려울 뿐 아니라 형태소를 분석할 때 다양한 어형 변화가 복원되어야 한다. 이것은 한국어 형태소 분석의 고질적인 문제 중 하나이며, 주로 규칙을 이용해서 해결한다. 규칙을 이용할 경우 주어진 문맥에 가장 적합한 복원을 어려워 여러 형태의 모호성을 생성하며, 이는 품사 부착에 의해서 해결된다. 본 논문에서는 이 문제를 기계학습 방법(Na$\ddot{i}$ve Bayes 모델)을 이용하여 해결한다. 기계학습 모델의 입력 자질은 어형 변화가 발생하는 주변 음절이며 출력 범주는 복원된 음절이다. ETRI 구문 말뭉치를 이용한 실험에서 제안된 형태소 복원 모델을 사용한 형태소 단위의 품사 부착 성능은 97.5%의 $F_1$점수를 보였으며 이 모델이 형태소 복원에 매우 유용함을 알 수 있었다.

점진적 특징 가중치 기법을 이용한 나이브 베이즈 문서분류기의 성능 개선 (Improving Naïve Bayes Text Classifiers with Incremental Feature Weighting)

  • 김한준;장재영
    • 정보처리학회논문지B
    • /
    • 제15B권5호
    • /
    • pp.457-464
    • /
    • 2008
  • 실제 운용 환경에서 자동문서분류시스템의 성공을 위해서 충분하지 못한 학습문서의 문제와 특징 공간들에 대한 사전지식이 없는 상황을 해결하는 것이 관건이다. 이런 맥락에서 많은 자동문서분류 시스템의 구축을 위해 나이브 베이즈 문서분류 알고리즘을 사용한다. 이는 기존 학습된 분류모델과 특징 공간을 점진적으로 갱신함으로써 분류모델을 향상시키는 것이 매우 용이하기 때문이다. 본 논문에서는 특징 가중치를 이용하여 문서분류기의 성능을 향상시키는 기법을 제안한다. 기본 아이디어는 문서분류 모델의 인자로서 특징들의 분포뿐만 아니라 각 특징들의 중요도를 반영하는 것이다. 속성 선택을 미리 수행하여 학습모델을 만드는 것이 아니라, 속성 중요도를 나이브 베이즈 학습 모델에 포함시킴으로써 보다 정확한 모델을 생성할 수 있다. 또한 동적 환경에서 점진적인 특징 가중치 부여를 위해 기존의 특징 갱신 기법을 확장한 알고리즘도 제안한다. 본 논문에서 제안된 기법을 평가하기 위해서 Reuters-21578과 20Newsgroup 문서집합 이용한 실험을 실시하여, 제안된 기법이 전통적인 나이브 베이즈 분류기의 성능을 크게 향상시킴을 증명한다.

Bayesian Approach to Users' Perspective on Movie Genres

  • Lenskiy, Artem A.;Makita, Eric
    • Journal of information and communication convergence engineering
    • /
    • 제15권1호
    • /
    • pp.43-48
    • /
    • 2017
  • Movie ratings are crucial for recommendation engines that track the behavior of all users and utilize the information to suggest items the users might like. It is intuitively appealing that information about the viewing preferences in terms of movie genres is sufficient for predicting a genre of an unlabeled movie. In order to predict movie genres, we treat ratings as a feature vector, apply a Bernoulli event model to estimate the likelihood of a movie being assigned a certain genre, and evaluate the posterior probability of the genre of a given movie by using the Bayes rule. The goal of the proposed technique is to efficiently use movie ratings for the task of predicting movie genres. In our approach, we attempted to answer the question: "Given the set of users who watched a movie, is it possible to predict the genre of a movie on the basis of its ratings?" The simulation results with MovieLens 1M data demonstrated the efficiency and accuracy of the proposed technique, achieving an 83.8% prediction rate for exact prediction and 84.8% when including correlated genres.

Opcode와 Windows API를 사용한 멀웨어 탐지 (Malware Detection Method using Opcode and windows API Calls)

  • 안태현;오상진;권영만
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권6호
    • /
    • pp.11-17
    • /
    • 2017
  • 본 논문에서는 멀웨어 탐지 방법으로 Opcode (operation code)와 실행 파일에서 추출한 Windows API Call로 구성된 특징 벡터를 사용하는 방법을 제안한다. 먼저 PE 파일에서 추출한 opcode와 windows API로 특징 벡터를 구성하고 Bernoulli Naïve Bayes과 K-Nearest Neighbor 분류기 알고리즘을 사용하여 성능을 각각 측정하였다. 실험결과, 제안한 방법과 KNN 분류기를 사용하여 분류하면 95.21%의 멀웨어 탐지 정확도를 얻을 수 있었다. 결과적으로 기존의 Opcode 또는 Windows API 호출 중 하나만 사용하는 방법보다 제안한 방법이 멀웨어 탐지 정확도에서 높은 성능을 보인다.

딥 러닝을 이용한 버그 담당자 자동 배정 연구 (Study on Automatic Bug Triage using Deep Learning)

  • 이선로;김혜민;이찬근;이기성
    • 정보과학회 논문지
    • /
    • 제44권11호
    • /
    • pp.1156-1164
    • /
    • 2017
  • 기존의 버그 담당자 자동 배정 연구들은 대부분 기계학습 알고리즘을 기반으로 예측 시스템을 구축하는 방식이었다. 따라서, 고성능의 기계학습 모델을 적용하는 것이 담당자 자동 배정 시스템 성능의 핵심이 된다고 할 수 있으며 관련 연구에서는 높은 성능을 보이는 SVM, Naive Bayes 등의 기계학습 모델들이 주로 사용되고 있다. 본 논문에서는 기계학습 분야에서 최근 좋은 성능을 보이고 있는 딥 러닝을 버그 담당자 자동 배정에 적용하고 그 성능을 평가한다. 실험 결과, 딥 러닝 기반 Bug Triage 시스템이 활성 개발자 대상 실험에서 48%의 정확도를 달성했으며 이는 기존의 기계학습 대비 최대 69%향상된 결과이다.