본 연구의 목적은 기존의 body fat mass 변수와 고콜레스테롤혈증의 연관성연구를 벗어나, 머신러닝기법을 기반으로 body fat mass 변수들의 조합을 이용하여 고콜레스테롤혈증 예측 모델을 개발하는 것이다. 이러한 연구를 위하여 국민건강영양조사 데이터를 기반으로 두 가지 variable selection 메소드와 머신러닝 알고리즘을 이용하여 총 6개의 모델을 생성하였고 질병 예측력을 비교분석하였다. 여러 body fat mass 관련 변수들 중에서 몸통지방량 변수가 고콜레스테롤혈증 예측력이 가장 우수한 변수인 것을 밝혀내었고, 머신러닝 기반 예측모델들 중에서 correlation-based feature subset selection 기반 naive Bayes 알고리즘을 이용한 모델이 0.739의 the area under the receiver operating characteristic curve 값과 0.36의 Matthews correlation coefficient 값을 얻었다. 이러한 연구의 결과는 향후 국내외 대규모 스크리닝 및 대중보건 연구에서 질병예측분야의 중요정보로 활용될 것으로 예상한다.
본 연구는 대학생의 중도탈락 패턴을 식별하는 효과적인 자동 분류 기법을 제안하고, 이를 바탕으로 중도탈락을 예방하기 위한 지능형 추천 시스템의 구현 방안을 제시하는 것을 목표로 한다. 이를 위해 1) 실제 대학생의 재학/제적 데이터를 기반으로 기계 학습의 성능을 향상시킬 수 있는 데이터 처리 방안을 제안하고, 2) 5종의 기계학습 알고리즘을 이용하여 성능 비교 실험을 실시하였다. 3) 실험 결과, 제안 기법이 베이스라인에 비해 모든 알고리즘에서 우수한 성능을 보여주었다. 제적생의 식별 정확률(precision)은 랜덤 포레스트(Random Forest)를 사용할 때 최대 95.6%, 제적생의 재현율(recall)은 나이브 베이즈(Naive Bayes)를 사용할 때 최대 80.0%로 측정되었다. 4) 마지막으로, 실험 결과를 바탕으로 중도탈락 가능성이 높은 학생을 우선 상담하는 추천 시스템의 활용 방안을 제시하였다. 교육 현안 문제를 해결하기 위해 IT 분야의 기술을 활용하는 융합 연구를 통해 합리적인 의사결정을 수행할 수 있음을 확인하였으며 향후 지속적인 연구를 통해 다양한 인공지능 기술을 적용하고자 한다.
본 논문에서는 다중 요인을 고려한 천연 가스 누출 정도 예측을 위해 관련 요인을 포함하는 기상청 자료와 천연가스 누출 자료를 통합하고, 요인 분석을 기반으로 중요 특성을 선택하는 머신러닝 기법을 제안한다. 제안된 기법은 3단계 절차로 구성되어 있다. 먼저, 통합 데이터 셋에 대해 선형 보간법을 수행하여 결측 데이터를 보완하는 전처리를 수행한다. 머신러닝 모델 학습 최적화를 위해 OrdinalEncoder(OE) 기반 정규화와 함께 요인 분석을 사용하여 필수 특징을 선택하며, 데이터 셋은 k-평균 클러스터링으로 레이블을 지정한다. 최종적으로 K-최근접 이웃, DT(Decision Tree), RF(Random Forest), NB(Naive Bayes)의 네 가지 알고리즘을 사용하여 가스 누출 수준을 예측한다. 제안된 방법은 정확도, AUC, 평균 표준 오차(MSE)로 평가되었으며, 테스트 결과 OE-F 전처리를 수행한 경우 기존 기법에 비해 성공적으로 개선되었음을 보였다. 또한 OE-F 기반 KNN(OE-F-KNN)은 95.20%의 정확도, 96.13%의 AUC, 0.031의 MSE로 비교 알고리즘 중 최고 성능을 보였다.
심혈관 질환은 전 세계적으로 주요 사망원인들 중 하나이다. 본 연구는 보다 우수한 심혈관질환 판별 모델을 생성하기 위한 방법에 대한 연구로써, 3가지 변수 선택법과 7가지 머신러닝 알고리즘을 바탕으로 사회인구학적 변수들을 이용하여 고혈압과 이상지질혈증 판별모델들을 생성하고, 생성된 모델들의 성능을 비교 평가한다. 본 연구의 결과에서는 두 가지 질병 모두에서, 전체변수 및 correlation-based feature subset selection 메소드 기반 모델들에서는 naive Bayes 모델이 다른 머신러닝을 이용한 모델들보다 다소 우수한 판별 성능이 있는 것으로 나타났고, wrapper 메소드 기반 변수 선택법에서는 logistic regression 모델이 다른 모든 모델보다 성능이 다소 우수한 것으로 나타났다. 본 연구의 결과는 원격의료 및 대중보건 분야에서 향후 한국인의 심혈관질환 판별 및 예측 모델 생성을 위한 참고자료로 활용될 수 있을 것으로 기대된다.
본 연구는 Google Play에서 수집된 Instagram 사용자 리뷰에 대한 심층 분석을 통해, 이 연구는 애플리케이션의 성능과 사용자 만족도에 대한 중요한 통찰력을 얻고자 한다. 텍스트 마이닝과 감성 분석 기술을 활용하여 사용자 리뷰에 담긴 감성과 의견을 체계적으로 파악하며, 이를 통해 앱의 개선점과 사용자 경험을 깊이 이해하려고 한다. 인스타그램 리뷰가 사용자들의 다양한 경험을 어떻게 반영하는지, 그리고 앱의 장단점을 어떻게 드러내는지를 분석한다. 이를 위해 나이브 베이즈 알고리즘을 사용한 감성 분석을 수행하며, 이 결과는 인스타그램 서비스 개선에 도움이 될 것으로 기대된다. 연구는 또한 개발자들이 사용자 피드백을 더 잘 이해하고 활용하는 데 도움을 주며, 결국 사용자 만족도를 향상시키는 데 기여할 것으로 예상된다. 이 연구는 소셜 미디어 사용 패턴과 사용자 의견의 복잡한 관계를 탐색하고, 이를 통해 더 나은 사용자 경험을 제공하는 방안을 모색한다.
한국어는 교착어이어서 형태소 분석 없이 품사 부착이 어려울 뿐 아니라 형태소를 분석할 때 다양한 어형 변화가 복원되어야 한다. 이것은 한국어 형태소 분석의 고질적인 문제 중 하나이며, 주로 규칙을 이용해서 해결한다. 규칙을 이용할 경우 주어진 문맥에 가장 적합한 복원을 어려워 여러 형태의 모호성을 생성하며, 이는 품사 부착에 의해서 해결된다. 본 논문에서는 이 문제를 기계학습 방법(Na$\ddot{i}$ve Bayes 모델)을 이용하여 해결한다. 기계학습 모델의 입력 자질은 어형 변화가 발생하는 주변 음절이며 출력 범주는 복원된 음절이다. ETRI 구문 말뭉치를 이용한 실험에서 제안된 형태소 복원 모델을 사용한 형태소 단위의 품사 부착 성능은 97.5%의 $F_1$점수를 보였으며 이 모델이 형태소 복원에 매우 유용함을 알 수 있었다.
실제 운용 환경에서 자동문서분류시스템의 성공을 위해서 충분하지 못한 학습문서의 문제와 특징 공간들에 대한 사전지식이 없는 상황을 해결하는 것이 관건이다. 이런 맥락에서 많은 자동문서분류 시스템의 구축을 위해 나이브 베이즈 문서분류 알고리즘을 사용한다. 이는 기존 학습된 분류모델과 특징 공간을 점진적으로 갱신함으로써 분류모델을 향상시키는 것이 매우 용이하기 때문이다. 본 논문에서는 특징 가중치를 이용하여 문서분류기의 성능을 향상시키는 기법을 제안한다. 기본 아이디어는 문서분류 모델의 인자로서 특징들의 분포뿐만 아니라 각 특징들의 중요도를 반영하는 것이다. 속성 선택을 미리 수행하여 학습모델을 만드는 것이 아니라, 속성 중요도를 나이브 베이즈 학습 모델에 포함시킴으로써 보다 정확한 모델을 생성할 수 있다. 또한 동적 환경에서 점진적인 특징 가중치 부여를 위해 기존의 특징 갱신 기법을 확장한 알고리즘도 제안한다. 본 논문에서 제안된 기법을 평가하기 위해서 Reuters-21578과 20Newsgroup 문서집합 이용한 실험을 실시하여, 제안된 기법이 전통적인 나이브 베이즈 분류기의 성능을 크게 향상시킴을 증명한다.
Journal of information and communication convergence engineering
/
제15권1호
/
pp.43-48
/
2017
Movie ratings are crucial for recommendation engines that track the behavior of all users and utilize the information to suggest items the users might like. It is intuitively appealing that information about the viewing preferences in terms of movie genres is sufficient for predicting a genre of an unlabeled movie. In order to predict movie genres, we treat ratings as a feature vector, apply a Bernoulli event model to estimate the likelihood of a movie being assigned a certain genre, and evaluate the posterior probability of the genre of a given movie by using the Bayes rule. The goal of the proposed technique is to efficiently use movie ratings for the task of predicting movie genres. In our approach, we attempted to answer the question: "Given the set of users who watched a movie, is it possible to predict the genre of a movie on the basis of its ratings?" The simulation results with MovieLens 1M data demonstrated the efficiency and accuracy of the proposed technique, achieving an 83.8% prediction rate for exact prediction and 84.8% when including correlated genres.
본 논문에서는 멀웨어 탐지 방법으로 Opcode (operation code)와 실행 파일에서 추출한 Windows API Call로 구성된 특징 벡터를 사용하는 방법을 제안한다. 먼저 PE 파일에서 추출한 opcode와 windows API로 특징 벡터를 구성하고 Bernoulli Naïve Bayes과 K-Nearest Neighbor 분류기 알고리즘을 사용하여 성능을 각각 측정하였다. 실험결과, 제안한 방법과 KNN 분류기를 사용하여 분류하면 95.21%의 멀웨어 탐지 정확도를 얻을 수 있었다. 결과적으로 기존의 Opcode 또는 Windows API 호출 중 하나만 사용하는 방법보다 제안한 방법이 멀웨어 탐지 정확도에서 높은 성능을 보인다.
기존의 버그 담당자 자동 배정 연구들은 대부분 기계학습 알고리즘을 기반으로 예측 시스템을 구축하는 방식이었다. 따라서, 고성능의 기계학습 모델을 적용하는 것이 담당자 자동 배정 시스템 성능의 핵심이 된다고 할 수 있으며 관련 연구에서는 높은 성능을 보이는 SVM, Naive Bayes 등의 기계학습 모델들이 주로 사용되고 있다. 본 논문에서는 기계학습 분야에서 최근 좋은 성능을 보이고 있는 딥 러닝을 버그 담당자 자동 배정에 적용하고 그 성능을 평가한다. 실험 결과, 딥 러닝 기반 Bug Triage 시스템이 활성 개발자 대상 실험에서 48%의 정확도를 달성했으며 이는 기존의 기계학습 대비 최대 69%향상된 결과이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.