Browse > Article
http://dx.doi.org/10.17703/JCCT.2019.5.4.413

Prediction model of hypercholesterolemia using body fat mass based on machine learning  

Lee, Bum Ju (Dept. of Future Medicine Division, Korea Institute of Oriental Medicine)
Publication Information
The Journal of the Convergence on Culture Technology / v.5, no.4, 2019 , pp. 413-420 More about this Journal
Abstract
The purpose of the present study is to develop a model for predicting hypercholesterolemia using an integrated set of body fat mass variables based on machine learning techniques, beyond the study of the association between body fat mass and hypercholesterolemia. For this study, a total of six models were created using two variable subset selection methods and machine learning algorithms based on the Korea National Health and Nutrition Examination Survey (KNHANES) data. Among the various body fat mass variables, we found that trunk fat mass was the best variable for predicting hypercholesterolemia. Furthermore, we obtained the area under the receiver operating characteristic curve value of 0.739 and the Matthews correlation coefficient value of 0.36 in the model using the correlation-based feature subset selection and naive Bayes algorithm. Our findings are expected to be used as important information in the field of disease prediction in large-scale screening and public health research.
Keywords
Machine learning; Data mining; prediction model; Cholesterol; Hypercholesterolemia; High cholesterol; Body fat mass;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ahn E, Kim E. A study on the eating behaviors and food intake of diabetic patients in Daegu.Gyeongbuk area. The Journal of the Convergence on Culture Technology. 2019;5(3):229-239 doi: http://dx.doi.org/10.17703/JCCT.2019.5.229.   DOI
2 Vasan SK, Osmond C, Canoy D, Christodoulides C, Neville MJ, Di Gravio C, Fall CHD, Karpe F. Comparison of regional fat measurements by dual-energy X-ray absorptiometry and conventional anthropometry and their association with markers of diabetes and cardiovascular disease risk. Int J Obes (Lond). 2018;42(4):850-857. doi: 10.1038/ijo.2017.289.   DOI
3 Gastaldelli A. Abdominal fat: does it predict the development of type 2 diabetes? Am J Clin Nutr. 2008;87(5):1118-1119. doi: 10.1093/ajcn/87.5.1118   DOI
4 Ohlson LO, Larsson B, Svardsudd K, Welin L, Eriksson H, Wilhelmsen L, et al. The influence of body fat distribution on the incidence of diabetes mellitus: 13.5 years of follow-up of the participants in the study of men born in 1913. Diabetes. 1985;34(10):1055-1058. doi: 10.2337/diab.34.10.1055   DOI
5 Trentman TL, Avey SG, Ramakrishna H. Current and emerging treatments for hypercholesterolemia: A focus on statins and proprotein convertase subtilisin/kexin Type 9 inhibitors for perioperative clinicians. J Anaesthesiol Clin Pharmacol. 2016;32(4):440-445. doi: 10.4103/0970-9185.194773.
6 Lee BJ, Ku B, A comparison of trunk circumference and width indices for hypertension and type 2 diabetes in a large-scale screening: a retrospective cross-sectional study. Sci Rep. 2018;8:13284(1-10). doi: 10.1038/s41598-018-31624-x   DOI
7 Lee BJ, Kim JY. Identification of Type 2 Diabetes Risk Factors Using Phenotypes Consisting of Anthropometry and Triglycerides based on Machine Learning. IEEE J Biomed Health Inform. 2016;20(1):39-46. doi: 10.1109/JBHI.2015.2396520.   DOI
8 Lee BJ, Kim JY. Identification of the Best Anthropometric Predictors of Serum High- and Low-Density Lipoproteins Using Machine Learning. IEEE J Biomed Health Inform. 2015;19(5):1747-1756. doi: 10.1109/JBHI.2014.2350014.   DOI
9 Lee BJ, Kim JY. Indicators of hypertriglyceridemia from anthropometric measures based on data mining. Comput Biol Med. 2015;57:201-211. doi: 10.1016/j.compbiomed.2014.12.005.   DOI
10 Lee BJ, Kim JY. A comparison of the predictive power of anthropometric indices for hypertension and hypotension risk. PLoS One 2014;9(1):e84897. doi: 10.1371/journal.pone.0084897.   DOI
11 Knowles JW, Rader DJ, Khoury MJ. Cascade Screening for Familial Hypercholesterolemia and the Use of Genetic Testing. JAMA. 2017;318(4):381-382. doi: 10.1001/jama.2017.8543.   DOI
12 Muls E, Kolanowski J, Scheen A, Van Gaal L; ObelHyx Study Group. The effects of orlistat on weight and on serum lipids in obese patients with hypercholesterolemia: a randomized, double-blind, placebo-controlled, multicentre study. Int J Obes Relat Metab Disord. 2001;25(11):1713-1721.   DOI
13 Carey VJ, Walters EE, Colditz GA, Solomon CG, Willet WC, Rosner BA, et al. Body fat distribution and risk of non-insulin-dependent diabetes mellitus in women: the Nurses' Health Study. Am J Epidemiol. 1997;145(7):614-619. doi: 10.1093/oxfordjournals.aje.a009158   DOI
14 Ortega FB, Sui X, Lavie CJ, Blair SN. Body Mass Index, the Most Widely Used but also Widely Criticized Index: Would a Gold-Standard Measure of Total Body Fat be a Better Predictor of Cardiovascular Disease Mortality? Mayo Clin Proc. 2016;91(4):443-455. doi: 10.1016/j.mayocp.2016.01.008   DOI
15 Lara-Esqueda A, Aguilar-Salinas CA, Velazquez-Monroy O, Gomez-Perez FJ, Rosas-Peralta M, Mehta R, Tapia-Conyer R. The body mass index is a less-sensitive tool for detecting cases with obesity-associated co-morbidities in short stature subjects. Int J Obes Relat Metab Disord. 2004;28(11):1443-1450.   DOI
16 Gibby JT, Njeru DK, Cvetko ST, Merrill RM, Bikman BT, Gibby WA. Volumetric analysis of central body fat accurately predicts incidence of diabetes and hypertension in adults. BMC Obes. 2015;2:10. doi: 10.1186/s40608-015-0039-3.   DOI
17 Gangwisch JE, Malaspina D, Babiss LA, Opler MG, Posner K, Shen S, Turner JB, Zammit GK, Ginsberg HN. Short sleep duration as a risk factor for hypercholesterolemia: analyses of the National Longitudinal Study of Adolescent Health. Sleep. 2010;33(7):956-961.   DOI
18 Shabnam AA, Homa K, Reza MT, Bagher L, Hossein FM, Hamidreza A. Cut-off points of waist circumference and body mass index for detecting diabetes, hypercholesterolemia and hypertension according to National Non-Communicable Disease Risk Factors Surveillance in Iran. Arch Med Sci. 2012;8(4):614-621. doi: 10.5114/aoms.2012.30284.
19 Sookyung Hyun, Susan Moffatt-Bruce, Cheryl Newton, Brenda Hixon, Pacharmon Kaewprag. Tree-based Approach to Predict Hospital Acquired Pressure Injury. International Journal of Advanced Culture Technology. 2019;7(1):8-13 doi: 10.17703/IJACT.2019.7.1.8.   DOI
20 Gishti O, Gaillard R, Durmus B, Abrahamse M, van der Beek EM, Hofman A, Franco OH, de Jonge LL, Jaddoe VW. BMI, total and abdominal fat distribution, and cardiovascular risk factors in school-age children. Pediatr Res. 2015;77(5):710-718. doi: 10.1038/pr.2015.29.   DOI
21 Hecker KD, Kris-Etherton PM, Zhao G, Coval S, Jeor SS. Impact of body weight and weight loss on cardiovascular risk factors. Curr Atheroscler Rep. 1999;1:236-242.   DOI
22 Wiklund P, Toss F, Weinehall L, Hallmans G, Franks PW, Nordstrom A, Nordstrom P. Abdominal and gynoid fat mass are associated with cardiovascular risk factors in men and women. J Clin Endocrinol Metab. 2008;93(11):4360-4366. doi: 10.1210/jc.2008-0804.   DOI
23 The Fourth Korea National Health and Nutrition Examination Survey (KNHANES IV-3), 2009, Korea Centers for Disease Control and Prevention.
24 Hall M, Holmes G. Benchmarking attribute selection techniques for discrete data class data mining. IEEE Trans Knowl Data Eng. 2003;15(6):1437-1447.   DOI
25 Berbee JF, Boon MR, Khedoe PP, Bartelt A, Schlein C, Worthmann A, Kooijman S, Hoeke G, Mol IM, John C, Jung C, Vazirpanah N, Brouwers LP, Gordts PL, Esko JD, Hiemstra PS, Havekes LM, Scheja L, Heeren J, Rensen PC. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun. 2015;6:6356. doi: 10.1038/ncomms7356.   DOI
26 Lee BJ, Ku B, Nam J, Pham DD, Kim JY. Prediction of fasting plasma glucose status using anthropometric measures for diagnosing type 2 diabetes. IEEE J Biomed Health Inform. 2014;18(2):555-561. doi: 10.1109/JBHI.2013.2264509.   DOI
27 Lee BJ, Kim JY. Identification of Hemoglobin Levels Based on Anthropometric Indices in Elderly Koreans. PLoS One 2016;11(11):e0165622. doi: 10.1371/journal.pone.0165622.   DOI
28 Chi JH, Shin MS, Lee BJ. Association of type 2 diabetes with anthropometrics, bone mineral density, and body composition in a large-scale screening study of Korean adults. PLoS One. 2019;14(7):e0220077. doi:10.1371/journal.pone.0220077.   DOI
29 Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software: an update. SIGKDD Explor. 2009;1(1):10-18.
30 Kohavi R, John GH. Wrappers for feature subset selection. Artif Intell. 1997;97(1):273-324.   DOI
31 Bosy-Westphal A, Geisler C, Onur S, Korth O, Selberg O, Schrezenmeir J, Muller MJ. Value of body fat mass vs anthropometric obesity indices in the assessment of metabolic risk factors. Int J Obes (Lond). 2006;30(3):475-483.   DOI