• 제목/요약/키워드: naive Bayes

검색결과 238건 처리시간 0.024초

행렬 전치를 이용한 효율적인 NaiveBayes 알고리즘 (An Efficient Algorithm for NaiveBayes with Matrix Transposition)

  • 이재문
    • 정보처리학회논문지B
    • /
    • 제11B권1호
    • /
    • pp.117-124
    • /
    • 2004
  • 본 논문은 NaiveBayes에서 정확도의 손실 없이 효율적으로 동작하는 NaiveBayes에 대한 새로운 알고리즘을 제안한다. 제안된 방법은 분류 벡터에 대한 행렬 전치를 사용하여 NaiveBayes의 확률 계산 량을 최소화하는 것이다. 제안된 방법을 문서 분류 프레임 인 AI::Categorizer 상에서 구현하였으며, 잘 알려진 로이터-21578 데이터를 사용하여 기존의 NaiveBayes 방법과 비교하였다. 성능 비교의 결과로부터 제안된 방법이 기존의 NaiveBayes 방법보다 실행 속도측면에서 약 2배 정도의 성능 개선 효과가 있음을 알 수 있었다. 수 있었다.

Naive Bayes 문서 분류기를 위한 점진적 학습 모델 연구 (A Study on Incremental Learning Model for Naive Bayes Text Classifier)

  • 김제욱;김한준;이상구
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 2001년도 춘계 Conference: CRM과 DB응용 기술을 통한 e-Business혁신
    • /
    • pp.331-341
    • /
    • 2001
  • 본 논문에서는 Naive Bayes 문서 분류기를 위한 새로운 학습모델을 제안한다. 이 모델에서는 라벨이 없는 문서들의 집합으로부터 선택한 적은 수의 학습 문서들을 이용하여 문서 분류기를 재학습한다. 본 논문에서는 이러한 학습 방법을 따를 경우 작은 비용으로도 문서 분류기의 정확도가 크게 향상될 수 있다는 사실을 보인다. 이와 같이, 알고리즘을 통해 라벨이 없는 문서들의 집합으로부터 정보량이 큰 문서를 선택한 후, 전문가가 이 문서에 라벨을 부여하는 방식으로 학습문서를 결정하는 것을 selective sampling이라 한다. 본 논문에서는 이러한 selective sampling 문제를 Naive Bayes 문서 분류기에 적용한다. 제안한 학습 방법에서는 라벨이 없는 문서들의 집합으로부터 재학습 문서를 선택하는 기준 측정치로서 평균절대편차(Mean Absolute Deviation), 엔트로피 측정치를 사용한다. 실험을 통해서 제안한 학습 방법이 기존의 방법인 신뢰도(Confidence measure)를 이용한 학습 방법보다 Naive Bayes 문서 분류기의 성능을 더 많이 향상시킨다는 사실을 보인다.

  • PDF

A Novel Posterior Probability Estimation Method for Multi-label Naive Bayes Classification

  • Kim, Hae-Cheon;Lee, Jaesung
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권6호
    • /
    • pp.1-7
    • /
    • 2018
  • A multi-label classification is to find multiple labels associated with the input pattern. Multi-label classification can be achieved by extending conventional single-label classification. Common extension techniques are known as Binary relevance, Label powerset, and Classifier chains. However, most of the extended multi-label naive bayes classifier has not been able to accurately estimate posterior probabilities because it does not reflect the label dependency. And the remaining extended multi-label naive bayes classifier has a problem that it is unstable to estimate posterior probability according to the label selection order. To estimate posterior probability well, we propose a new posterior probability estimation method that reflects the probability between all labels and labels efficiently. The proposed method reflects the correlation between labels. And we have confirmed through experiments that the extended multi-label naive bayes classifier using the proposed method has higher accuracy then the existing multi-label naive bayes classifiers.

Map-Reduce 프로그래밍 모델 기반의 나이브 베이스 학습 알고리즘 (Naive Bayes Learning Algorithm based on Map-Reduce Programming Model)

  • 강대기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 추계학술대회
    • /
    • pp.208-209
    • /
    • 2011
  • 본 논문에서는, 맵-리듀스 모델 기반에서 나이브 베이스 알고리즘으로 학습과 추론을 수행하는 방안에 대해 소개하고자 한다. 이를 위해 Apache Mahout를 이용하여 분산 나이브 베이스 (Distributed Naive Bayes) 학습 알고리즘을 University of California, Irvine (UCI)의 벤치마크 데이터 집합에 적용하였다. 실험 결과, Apache Mahout의 분산 나이브 베이스 학습 알고리즘은 일반적인 WEKA의 나이브 베이스 학습 알고리즘과 그 성능면에서 큰 차이가 없음을 알 수 있었다. 이러한 결과는, 향후 빅 데이터 환경에서 Apache Mahout와 같은 맵-리듀스 모델 기반 시스템이 기계 학습에 큰 기여를 할 수 있음을 나타내는 것이다.

  • PDF

Naive Bayes classifiers boosted by sufficient dimension reduction: applications to top-k classification

  • Yang, Su Hyeong;Shin, Seung Jun;Sung, Wooseok;Lee, Choon Won
    • Communications for Statistical Applications and Methods
    • /
    • 제29권5호
    • /
    • pp.603-614
    • /
    • 2022
  • The naive Bayes classifier is one of the most straightforward classification tools and directly estimates the class probability. However, because it relies on the independent assumption of the predictor, which is rarely satisfied in real-world problems, its application is limited in practice. In this article, we propose employing sufficient dimension reduction (SDR) to substantially improve the performance of the naive Bayes classifier, which is often deteriorated when the number of predictors is not restrictively small. This is not surprising as SDR reduces the predictor dimension without sacrificing classification information, and predictors in the reduced space are constructed to be uncorrelated. Therefore, SDR leads the naive Bayes to no longer be naive. We applied the proposed naive Bayes classifier after SDR to build a recommendation system for the eyewear-frames based on customers' face shape, demonstrating its utility in the top-k classification problem.

N-Gram 증강 나이브 베이스를 이용한 정확한 침입 탐지 (Accurate Intrusion Detection using n-Gram Augmented Naive Bayes)

  • 강대기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 추계종합학술대회 B
    • /
    • pp.285-288
    • /
    • 2008
  • 기계 학습을 응용한 많은 침입 탐지 시스템들은 n-그램 접근 방법을 주로 쓰고 있다. 그러나, n-그램 접근 방법은 주어진 시퀀스에서 획득한 n-그램들이 서로 겹치는 문제들을 가지고 있다. 본 연구에서는 이러한 문제들을 해결하기 위해, n-그램 증강 나이브 베이스 (n-gram augmented naive Bayes) 알고리즘을 침입 시퀀스의 분류에 적용하였다. 제안된 시스템의 성능을 평가하기 위해 n-그램 특징들을 사용하는 일반 나이브 베이스 (naive Bayes) 알고리즘과 서포트 벡터 머신 (support vector machines) 알고리즘과 본 연구에서 제안한 n-그램 증강 나이브 베이스 알고리즘을 비교하였다. 뉴 멕시코 대학의 벤치마크 데이터에 적용해 본 결과에 따르면, n-그램 증강 방법이, n-그램이 나이브 베이스에 직접 적용되는 경우(예: n-그램 특징을 사용하는 일반 나이브 베이스), 생기는 독립성 가정에 대한 위배 문제도 해결하면서, 동시에 n-그램 특징을 사용하는 일반 나이브 베이스보다 더 정확하며, n-그램 특징을 사용하는 SVM과 필적할만한 수준의 침입 탐지기를 생성해 내었다.

  • PDF

나이브 베이스에서의 커널 밀도 측정과 상호 정보량 (Mutual Information in Naive Bayes with Kernel Density Estimation)

  • 샹총량;유샹루;강대기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.86-88
    • /
    • 2014
  • 나이브 베이스가 가지는 가정은 실세계 데이터를 분류함에 있어 해로운 효과를 보이곤 한다. 이러한 가정을 완화하기 위해, 우리는 Naive Bayes Mutual Information Attribute Weighting with Smooth Kernel Density Estimation (NBMIKDE) 접근 방법을 소개한다. NBMIKDE는 애트리뷰트를 위한 스무드 커널과 상호 정보량 측정값을 기반으로 하는 어트리뷰트 가중치 기법을 조합한 것이다.

  • PDF

다항시행접근 단순 베이지안 문서분류기의 개선 (Improving Multinomial Naive Bayes Text Classifier)

  • 김상범;임해창
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권3_4호
    • /
    • pp.259-267
    • /
    • 2003
  • 단순 베이지언 분류모형은 구현이 간단하고 효율적이기 때문에 실용적으로 사용하기에 적합하다. 그러나 이 분류모형은 많은 기계학습 도메인에서 우수한 성능을 보임에도 불구하고 문서분류에 적용되었을 경우에는 그 성능이 매우 낮은 것으로 알려져왔다. 본 논문에서는 단순 베이지언 분류모형중 가장 성능이 우수한 것으로 알려진 다항 시행접근 단순 베이지언 분류모형을 개선하는 세가지 방법을 제안한다. 첫 번째는 범주에 대한 단어의 확률추정방법을 문서모델에 기반하여 개선하는 것이고, 두 번째는 문서의 길이에 따라 범주와의 관련성이 선형적으로 증가하는 것을 억제하기 위해 길이에 대한 정규화를 수행하는 것이며, 마지막으로 범주판정에 중요한 역할을 하는 단어들의 영향력을 높여주기 위하여 상호정보가중 단순 베이지언 분류방법을 사용하는 것이다. 제안하는 방법들은 문서분류기의 성능 평가를 위한 벤치마크 문서집합인 Reuters21578과 20Newsgroup에서 기존의 방범에 비해 상당한 성능향상을 가져옴을 알 수 있었다.

Naive Bayes 분석기법을 이용한 유방암 진단 (Breast Cancer Diagnosis using Naive Bayes Analysis Techniques)

  • 박나영;김장일;정용규
    • 서비스연구
    • /
    • 제3권1호
    • /
    • pp.87-93
    • /
    • 2013
  • 선진국형 질병으로만 알려져 있던 유방암이 우리나라 현대 여성들에게 발병률이 꾸준히 증가하고 있다. 유방암은 보통 50대 이상의 여성에서 발병하는 병으로 알려져 있지만 우리나라의 경우 40대의 서양보다 젊은 여성들에게 발병률이 꾸준히 증가하고 있다. 따라서 우리나라 성인여성을 기준으로 유방암에 대한 정확한 진단을 할 수 있는 매뉴얼을 구축하는 것이 시급한 과제이다. 본 논문에서는 데이터마이닝기법을 이용하여 유방암을 예측하는 방법을 제시한다. 데이터마이닝이란 데이터베이스 내에 숨어 있는 일정한 패턴이나 변수들 간의 관계를 정교한 분석모형을 이용하여 쉽게 드러나지 않은 유용한 정보를 찾아내는 과정을 말한다. 실험을 통하여 Deicion Tree와 Naive Bayes 분석기법을 사용하여 유방암을 진단하는 분석기법을 비교분석을 하였다. Deicison Tree는 C4.5 알고리즘을 적용하여 분석하였고 두 알고리즘이 상당히 좋은 분류 정확도를 나타냈다. 그러나 Naive Bayes 분류방법이 Decision Tree방법보다 더 상회하는 정확도를 보였고 이는 의료데이터의 특성에 많이 기인한다고 볼 수 있다.

  • PDF

N-그램 증강 나이브 베이스 알고리즘과 일반화된 k-절단 서픽스트리를 이용한 확장가능하고 정확한 침입 탐지 기법 (Scalable and Accurate Intrusion Detection using n-Gram Augmented Naive Bayes and Generalized k-Truncated Suffix Tree)

  • 강대기;황기현
    • 한국정보통신학회논문지
    • /
    • 제13권4호
    • /
    • pp.805-812
    • /
    • 2009
  • 기계 학습을 응용한 많은 침입 탐지 시스템들에서 n-그램 접근 방법이 사용되고 있다. 그러나, n-그램 접근방법은 확장이 어렵고, 주어진 시퀀스에서 획득한 n-그램들이 서로 겹치는 문제들을 가지고 있다. 본 연구에서는 이러한 문제들을 해결하기 위해, 일반화된 k-절단 서픽스트리 (generalized k-truncated suffix tree; k-TST) 기반의 n-그램 증강 나이브 베이스 (n-gram augmented naive Bayes) 알고리즘을 침입 시퀀스의 분류에 적용하여 보았다. 제 안된 시스템의 성능을 평가하기 위해 n-그램 특징들을 사용하는 일반 나이브 베이스 (naive Bayes) 알고리즘과 서포트 벡터 머신(support vector machines) 알고리즘과 본 연구에서 제안한 n-그램 증강 나이브 베이스 알고리즘을 호스트 기반 침입 탐지 벤치마크 데이터와 비교하였다. 공개된 호스트 기반 침입 탐지 벤치마크 데이터인 뉴 멕시코 대학(University of New Mexico)의 벤치마크 데이터에 적용해 본 결과에 따르면, n-그램 증강 방법이, n-그램이 나이브 베이스에 직접 적용되는 경우(예: n-그램 특징을 사용하는 일반 나이브 베이스), 생기는 독립성 가정에 대한 위배의 문제도 해결하면서, 동시에 더 정확한 침입 탐지기를 생성해냄을 알 수 있었다.