본 논문은 NaiveBayes에서 정확도의 손실 없이 효율적으로 동작하는 NaiveBayes에 대한 새로운 알고리즘을 제안한다. 제안된 방법은 분류 벡터에 대한 행렬 전치를 사용하여 NaiveBayes의 확률 계산 량을 최소화하는 것이다. 제안된 방법을 문서 분류 프레임 인 AI::Categorizer 상에서 구현하였으며, 잘 알려진 로이터-21578 데이터를 사용하여 기존의 NaiveBayes 방법과 비교하였다. 성능 비교의 결과로부터 제안된 방법이 기존의 NaiveBayes 방법보다 실행 속도측면에서 약 2배 정도의 성능 개선 효과가 있음을 알 수 있었다. 수 있었다.
본 연구에서는 나이브 베이시안 학습의 환경에서 속성의 가중치를 계산하는 새로운 방식을 제안한다. 기존 방법들이 속성에 가중치를 부여하는 방식인데 반하여 본 연구에서는 한걸음 더 나아가 속성의 값에 가중치를 부여하는 새로운 방식을 연구하였다. 이러한 속성값의 가중치를 계산하기 위하여 Kullback-Leibler 함수를 이용하여 가중치를 계산하는 방식을 제안하였고 이러한 가중치들의 특성을 분석하였다. 제안된 알고리즘은 다수의 데이터를 이용하여 속성 가중치 방식과 비교하였고 대부분의 경우에 더 좋은 성능을 제공함을 알 수 있었다.
한국데이타베이스학회 2001년도 춘계 Conference: CRM과 DB응용 기술을 통한 e-Business혁신
/
pp.331-341
/
2001
본 논문에서는 Naive Bayes 문서 분류기를 위한 새로운 학습모델을 제안한다. 이 모델에서는 라벨이 없는 문서들의 집합으로부터 선택한 적은 수의 학습 문서들을 이용하여 문서 분류기를 재학습한다. 본 논문에서는 이러한 학습 방법을 따를 경우 작은 비용으로도 문서 분류기의 정확도가 크게 향상될 수 있다는 사실을 보인다. 이와 같이, 알고리즘을 통해 라벨이 없는 문서들의 집합으로부터 정보량이 큰 문서를 선택한 후, 전문가가 이 문서에 라벨을 부여하는 방식으로 학습문서를 결정하는 것을 selective sampling이라 한다. 본 논문에서는 이러한 selective sampling 문제를 Naive Bayes 문서 분류기에 적용한다. 제안한 학습 방법에서는 라벨이 없는 문서들의 집합으로부터 재학습 문서를 선택하는 기준 측정치로서 평균절대편차(Mean Absolute Deviation), 엔트로피 측정치를 사용한다. 실험을 통해서 제안한 학습 방법이 기존의 방법인 신뢰도(Confidence measure)를 이용한 학습 방법보다 Naive Bayes 문서 분류기의 성능을 더 많이 향상시킨다는 사실을 보인다.
A multi-label classification is to find multiple labels associated with the input pattern. Multi-label classification can be achieved by extending conventional single-label classification. Common extension techniques are known as Binary relevance, Label powerset, and Classifier chains. However, most of the extended multi-label naive bayes classifier has not been able to accurately estimate posterior probabilities because it does not reflect the label dependency. And the remaining extended multi-label naive bayes classifier has a problem that it is unstable to estimate posterior probability according to the label selection order. To estimate posterior probability well, we propose a new posterior probability estimation method that reflects the probability between all labels and labels efficiently. The proposed method reflects the correlation between labels. And we have confirmed through experiments that the extended multi-label naive bayes classifier using the proposed method has higher accuracy then the existing multi-label naive bayes classifiers.
Yang, Su Hyeong;Shin, Seung Jun;Sung, Wooseok;Lee, Choon Won
Communications for Statistical Applications and Methods
/
제29권5호
/
pp.603-614
/
2022
The naive Bayes classifier is one of the most straightforward classification tools and directly estimates the class probability. However, because it relies on the independent assumption of the predictor, which is rarely satisfied in real-world problems, its application is limited in practice. In this article, we propose employing sufficient dimension reduction (SDR) to substantially improve the performance of the naive Bayes classifier, which is often deteriorated when the number of predictors is not restrictively small. This is not surprising as SDR reduces the predictor dimension without sacrificing classification information, and predictors in the reduced space are constructed to be uncorrelated. Therefore, SDR leads the naive Bayes to no longer be naive. We applied the proposed naive Bayes classifier after SDR to build a recommendation system for the eyewear-frames based on customers' face shape, demonstrating its utility in the top-k classification problem.
Naive Bayesian classifiers 네이브 베이지안 분류기는 샘플 데이터로부터 쉽게 구현될 수 있는 강력하고도 많이 사용되는 형식의 분류기다. 그러나 강한 조건부 독립성으로 인하여 효율이 저하되는 분류 결과를 초래한다. 일반적으로 네이브 베이지안 분류기는 연속성을 가진 특징 데이터의 우도를 처리하기 위해 가우시안 분산을 사용한다. 속성들의 확률밀도는 항상 가우시안 분산에 적합한 것만은 아니다. 또 다른 형식의 분류기는 지도학습을 통해 퍼지 규칙과 퍼지집합을 학습할 수 있는 퍼지신경망이다. 퍼지신경망과 네이브 베이지안 분류기간에는 구조적 유사성을 가지고 있기 때문에 퍼지신경망으로 학습된 분산 그래프를 네이브 베이지안 분류기에 적용하고자 하는 방안이 본 연구의 목적이다. 따라서 네이브 베이지안 분류기에 가우시안 분산 그래프를 사용한 결과와 퍼지 분산 그래프를 사용한 결과를 비교하였다. 이를 위해 leukemia와 colon의 DNA 마이크로어레이 데이터를 적용하여 분류하였다. 네이브 베이지안 분류기에 퍼지 분산 그래프를 사용한 결과 가우시안 분산 그래프를 사용한 결과보다 더 신뢰성이 있음을 보여주었다.
본 논문에서는, 맵-리듀스 모델 기반에서 나이브 베이스 알고리즘으로 학습과 추론을 수행하는 방안에 대해 소개하고자 한다. 이를 위해 Apache Mahout를 이용하여 분산 나이브 베이스 (Distributed Naive Bayes) 학습 알고리즘을 University of California, Irvine (UCI)의 벤치마크 데이터 집합에 적용하였다. 실험 결과, Apache Mahout의 분산 나이브 베이스 학습 알고리즘은 일반적인 WEKA의 나이브 베이스 학습 알고리즘과 그 성능면에서 큰 차이가 없음을 알 수 있었다. 이러한 결과는, 향후 빅 데이터 환경에서 Apache Mahout와 같은 맵-리듀스 모델 기반 시스템이 기계 학습에 큰 기여를 할 수 있음을 나타내는 것이다.
나이브 베이시안 알고리즘은 데이터 마이닝의 여러 분야에서 적용되고 있으며 좋은 성능을 보여주고 있다. 하지만 이 학습 방법은 모든 속성의 가중치가 동일하다는 가정을 하고 있으며 이러한 가정으로 인하여 가끔 정확도가 떨어지는 현상이 발생한다. 이러한 문제를 보완하기 위하여 나이브 베이시안에서 속성의 가중치를 조절하는 다수의 연구가 제안되어 이러한 단점을 보완하고 있다. 본 연구에서는 나이브 베이시안 학습에서 기존의 속성에 가중치를 부여하는 방식에서 한걸음 나아가 속성의 값에 가중치를 부여하는 새로운 방식을 연구하였다. 이러한 속성값의 가중치를 계산하기 위하여 점진적 하강(gradient descent) 방법을 이용하여 가중치를 계산하는 방식을 제안하였다. 제안된 알고리즘은 다수의 데이터를 이용하여 속성 가중치 방식과 비교하였고 대부분의 경우에 더 좋은 성능을 제공함을 알 수 있었다.
기계 학습을 응용한 많은 침입 탐지 시스템들은 n-그램 접근 방법을 주로 쓰고 있다. 그러나, n-그램 접근 방법은 주어진 시퀀스에서 획득한 n-그램들이 서로 겹치는 문제들을 가지고 있다. 본 연구에서는 이러한 문제들을 해결하기 위해, n-그램 증강 나이브 베이스 (n-gram augmented naive Bayes) 알고리즘을 침입 시퀀스의 분류에 적용하였다. 제안된 시스템의 성능을 평가하기 위해 n-그램 특징들을 사용하는 일반 나이브 베이스 (naive Bayes) 알고리즘과 서포트 벡터 머신 (support vector machines) 알고리즘과 본 연구에서 제안한 n-그램 증강 나이브 베이스 알고리즘을 비교하였다. 뉴 멕시코 대학의 벤치마크 데이터에 적용해 본 결과에 따르면, n-그램 증강 방법이, n-그램이 나이브 베이스에 직접 적용되는 경우(예: n-그램 특징을 사용하는 일반 나이브 베이스), 생기는 독립성 가정에 대한 위배 문제도 해결하면서, 동시에 n-그램 특징을 사용하는 일반 나이브 베이스보다 더 정확하며, n-그램 특징을 사용하는 SVM과 필적할만한 수준의 침입 탐지기를 생성해 내었다.
학생들은 수업전 그들의 일상적인 경험, 직접적인 관찰, 문화적인 배경으로 인하여 자연 현상에 관하여 과학자가 지니는 과학적 사고(Scientific theories)와는 다른 유년적 사고(Naive theories)을 지니고 있다는 사실이 연구에 의하여 보고되어 왔다. 본 연구는 중력현상에 관한 학생들의 유년적 사고(Naive theories)를 조사한 것이다. 이의 대상은 국민학생 49명, 중학생 53명, 고동학교 49명으로 하였다. 연구 방법으로는 질문지법(Open-ended written questions)과 면접법(Interview)을 이용하였다. 연구 결과는 국민학생에서 고등학생에 이르기까지 중력현상에 관하여 유년적 사고(Naive theories)를 지니고 있는 것으로 밝혀졌다. 중력현상에 관한 유년적 사고(Naive theories)들은 중력 현상이 공기의 유무, 대기압, 마개의 유무, 물의 상태변화, 온도의 영향등으로 지배를 받는다고 설명하였으며, 이러한 생각은 고학년으로 갈수록 줄어들고 있음을 볼 수 있다. 질문지법(Open-ended written question)과 면접법(Interview)의 결과가 매우 일치하는 것으로 밝혀졌다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.