• Title/Summary/Keyword: nParticle

Search Result 1,373, Processing Time 0.035 seconds

Effect of Silver Particle Introduction on Rolling Friction (구름거동에 미치는 은 입자 투여의 영향에 대한 실험적 고찰)

  • 양승호;공호성;윤의성;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.105-113
    • /
    • 2001
  • The effect of silver particle introduction on the rolling friction of AISI 52100 steel pairs has been investigated. Experiments were performed in dry conditions using a thrust bearing-type rolling test rig at a load range of 12 - 960 N and a sliding velocity range of 8 - 785 mm/sec with pure(99.99%) silver particles. Results showed that the introduced silver particles formed transfer layer, which protected virgin bearing surfaces and resulted in low rolling friction. By changing the quantity of silver particles, transitions in the rolling friction wear found. Results also showed that the variations in normal load and rolling speed also affected the rolling friction behavior. Analyses using SEM and EPMA showed that tile formation of transfer layer was mainly governed by the silver particle quantity, normal load and rolling speed, and this resulted in the different behavior of rolling friction. In this study, it was found that the low and stable rolling friction was resulted from the shakedown phenomena occurred at the silver transfer layer.

  • PDF

Effect of Particle Sizes of Polymer Binders for Pigment Inks on Touch of Fabrics (안료 잉크용 바인더의 입자 크기가 직물의 태에 미치는 영향)

  • Park, Seongmin;Han, Minwoo;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.32 no.4
    • /
    • pp.226-231
    • /
    • 2020
  • This study investigated effect of particle sizes of polymer binders for digital textile printing(DTP) pigment inks on touch of fabrics. The polymer binders were synthesized via miniemulsion polymerization of methyl methacrylate(MMA), butyl acrylate(BA), N-ethylolacrylamide(NEA) and methacrylic acid(MAA). The prepared binders were applied to black pigment inks and those black pigment inks were used to dye cotton fabrics. Then, color strength, rubbing fastness, stiffness, surface and bending properties of the dyed fabrics were investigated. Depending on the particle size of the polymer binder used, color strength, friction fastness, stiffness, surface and bending properties change. Generally, the larger the particle size of the polymer binder, the softer properties.

EFFECT OF MAGNETIC FIELD ON LONGITUDINAL FLUID VELOCITY OF INCOMPRESSIBLE DUSTY FLUID

  • N. JAGANNADHAM;B.K. RATH;D.K. DASH
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.2
    • /
    • pp.401-411
    • /
    • 2023
  • The effects of longitudinal velocity dusty fluid flow in a weak magnetic field are investigated in this paper. An external uniform magnetic field parallel to the flow of dusty fluid influences the flow of dusty fluid. Besides that, the problem under investigation is completely defined in terms of identifying parameters such as longitudinal velocity (u), Hartmann number (M), dust particle interactions β, stock resistance γ, Reynolds number (Re) and magnetic Reynolds number (Rm). While using suitable transformations of resemblance, The governing partial differential equations are transformed into a system of ordinary differential equations. The Hankel Transformation is used to solve these equations numerically. The effects of representing parameters on the fluid phase and particle phase velocity flow are investigated in this analysis. The magnitude of the fluid particle is reduced significantly. The result indicates the magnitude of the particle reduced significantly. Although some of our numerical solutions agree with some of the available results in the literature review, other results differs because of the effect of the introduced magnetic field.

An Indoor Localization Algorithm based on Improved Particle Filter and Directional Probabilistic Data Association for Wireless Sensor Network

  • Long Cheng;Jiayin Guan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3145-3162
    • /
    • 2023
  • As an important technology of the internetwork, wireless sensor network technique plays an important role in indoor localization. Non-line-of-sight (NLOS) problem has a large effect on indoor location accuracy. A location algorithm based on improved particle filter and directional probabilistic data association (IPF-DPDA) for WSN is proposed to solve NLOS issue in this paper. Firstly, the improved particle filter is proposed to reduce error of measuring distance. Then the hypothesis test is used to detect whether measurements are in LOS situations or NLOS situations for N different groups. When there are measurements in the validation gate, the corresponding association probabilities are applied to weight retained position estimate to gain final location estimation. We have improved the traditional data association and added directional information on the original basis. If the validation gate has no measured value, we make use of the Kalman prediction value to renew. Finally, simulation and experimental results show that compared with existing methods, the IPF-DPDA performance better.

Semi-continuous Emulsion Polymerization of n-Butyl acrylate/Methyl metacrylate using Environmental-Friendly LE-Type Nonionic Surfactant (환경친화적 LE-형 비이온계면활성제를 사용한 반연속식 말브틸-아크릴레이트/메틸메타-아크릴레이트 유화중합에 관한 연구)

  • Kim, Chul-Ung
    • Clean Technology
    • /
    • v.11 no.1
    • /
    • pp.41-50
    • /
    • 2005
  • In this study, semibatch emulsion copolymerization of n-BA as adhesive component and MMA as coagulant component were carried out for the stable acrylic polymer latex in aqueous phase for polymer cement using LE-type nonionic surfactant as environmental friendly surfactant. The stable polymer emulsion was obtained with the increases of chain length(n) of this surfactant. The effect on the amount of LE-50 as nonionic surfactant were showed that the concentration of polymer latex were increased by increasing the amount of LE-50, whereas the average particle size were decreased by increasing the amount. The addition of functional monomer in initial reactor charge showed a significant effect on the final polymer concentration and the latex particle size. The single polymerization of each n-BA or MMA showed a very low concentration of polymer latex and very big particle size due to coagulation. In the polymerization composed of mixed monomer with MMA and n-BA, the larger the ratio of MMA to n-BA in the copolymers, the greater the amount of coagulum produced. It was found that a stable copolymers were obtained in the range of 15-35 % of n-BA. Moreover, incorporation of some functional monomers in addition to of main monomers became more stable polymer latex. Through DSC and IR analysis, the final polymer latex was composed by MMA/n-BA/AA/AM with a single Tg depending on the reaction conditions. As a result, the conditions of this acrylic polymerization could also be effectively controlled to get the desired final products.

  • PDF

Particle-in-cell simulation feasibility test for analysis of non-collective Thomson scattering as a diagnostic method in ITER

  • Zamenjani, F. Moradi;Asgarian, M. Ali;Mostajaboddavati, M.;Rasouli, C.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.568-574
    • /
    • 2020
  • The feasibility of the particle-in-cell (PIC) method is assessed to simulate the non-collective phenomena like non-collective Thomson scattering (TS). The non-collective TS in the laser-plasma interaction, which is related to the single-particle behavior, is simulated through a 2D relativistic PIC code (XOOPIC). For this simulation, a non-collective TS is emitted from a 50-50 DT plasma with electron density and temperature of ne = 3.00 × 1013 cm-3 and Te = 1000 eV, typical for the edge plasma at ITER measured by ETS system, respectively. The wavelength, intensity, and FWHM of the laser applied in the ETS system are λi,0 = 1.064 × 10-4 cm, Ii = 2.24 × 1017 erg=s·㎠, and 12.00 ns, respectively. The electron density and temperature predicted by the PIC simulation, obtained from the TS scattered wave, are ne,TS = 2.91 × 1013 cm-3 and Te,TS = 1089 eV, respectively, which are in accordance with the input values of the simulated plasma. The obtained results indicate that the ambiguities rising due to the contradiction between the PIC statistical collective mechanism caused by the super-particle concept and the non-collective nature of TS are resolved. The ability and validity to use PIC method to study the non-collective regimes are verified.

Effect of Iron Species in Mesoporous Fe-N/C Catalysts with Different Shapes on Activity Towards Oxygen Reduction Reaction

  • Kang, Taehong;Lee, Jiyeon;Kim, Jong Gyeong;Pak, Chanho
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.137-145
    • /
    • 2021
  • Among the non-precious metal catalysts, iron-nitrogen doped carbon (Fe-N/C) catalysts have been recognized as the most promising candidates for an alternative to Pt-based catalysts for the oxygen reduction reaction (ORR) under alkaline and acidic conditions. In this study, the nano replication method using mesoporous silica, which features tunable primary particle sizes and shape, is employed to prepare the mesoporous Fe-N/C catalysts with different shapes. Platelet SBA-15, irregular KIT-6, and spherical silica particle (SSP) were selected as a template to generate three different kinds of shapes of the mesoporous Fe-N/C catalyst. Physicochemical properties of mesoporous Fe-N/C catalysts are characterized by using small-angle X-ray diffraction, nitrogen adsorption-desorption isotherms, and scanning electron microscopy images. According to the electrochemical evaluation, there is no morphological preference of mesoporous Fe-N/C catalysts toward the ORR activity with half-cell configuration under alkaline electrolyte. By implementing X-ray photoelectron spectroscopy analysis of Fe and N atoms in the mesoporous Fe-N/C catalysts, it is possible to verify that the activity towards ORR highly depends on the portions of "Fe-N" species in the catalysts regardless of the shape of catalysts. It was suggested that active site distribution in the Fe-N/C is one important factor towards ORR activity.

Water Quality and Particle Size Distributions of Bridge Road Runoff in Storm Event (강우시 교량도로 유출수 수질 및 입경분포)

  • Cho, Yong-Jin;Lee, Jun-Ho;Bang, Ki-Woong;Choi, Chang-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1353-1359
    • /
    • 2007
  • Water quality constituents, and particle size distributions were characterized in urban bridge road runoff, Bridge road runoff contains significant loads of micro-particles, heavy metals and organic constituents. Bridge road runoff was monitored on four sites of four and six lanes bridge road areas along with traffic volume. A total seven storm events were monitored to characterize the bridge road runoff. The quantity of road runoff and quality constituents, including chemical oxygen demand(COD), suspended solids(SS), total nitrogen(T-N), ortho-phosphorus$(PO_4-P)$, total phosphorus(T-P), and particle size distribution were analyzed. The results indicate that the concentrations of SS, COD, T-N and T-P ranges were $35\sim2,390$ mg/L, $40\sim1,274$ mg/L, $0.03\sim21.25$ mg/L, and $0.05\sim4.58$ mg/L, respectively. And the results showed that the mean range of particle size and $D_{90}$ for bridge road runoff were $4.75\sim14.05{\mu}m$ and $17.33\sim58.15{\mu}m$, respectively.

A Study on the Optimal Design of Soft X-ray Ionizer using the Monte Carlo N-Particle Extended Code (Monte Carlo N-Particle Extended 코드를 이용한 연X선 정전기제거장치의 최적설계에 관한 연구)

  • Jeong, Phil hoon;Lee, Dong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.34-37
    • /
    • 2017
  • In recent emerging industry, Display field becomes bigger and bigger, and also semiconductor technology becomes high density integration. In Flat Panel Display, there is an issue that electrostatic phenomenon results in fine dust adsorption as electrostatic capacity increases due to bigger size. Destruction of high integrated circuit and pattern deterioration occur in semiconductor and this causes the problem of weakening of thermal resistance. In order to solve this sort of electrostatic failure in this process, Soft X-ray ionizer is mainly used. Soft X-ray Ionizer does not only generate electrical noise and minute particle but also is efficient to remove electrostatic as it has a wide range of ionization. X-ray Generating efficiency has an effect on soft X-ray Ionizer affects neutralizing performance. There exist variable factors such as type of anode, thickness, tube voltage etc., and it takes a lot of time and financial resource to find optimal performance by manufacturing with actual X-ray tube source. MCNPX (Monte Carlo N-Particle Extended) is used for simulation to solve this kind of problem, and optimum efficiency of X-ray generation is anticipated. In this study, X-ray generation efficiency was measured according to target material thickness using MCNPX under the conditions that tube voltage is 5 keV, 10 keV, 15 keV and the target Material is Tungsten(W), Gold(Au), Silver(Ag). At the result, Gold(Au) shows optimum efficiency. In Tube voltage 5 keV, optimal target thickness is $0.05{\mu}m$ and Largest energy of Light flux appears $2.22{\times}10^8$ x-ray flux. In Tube voltage 10 keV, optimal target Thickness is $0.18{\mu}m$ and Largest energy of Light flux appears $1.97{\times}10^9$ x-ray flux. In Tube voltage 15 keV, optimal target Thickness is $0.29{\mu}m$ and Largest energy of Light flux appears $4.59{\times}10^9$ x-ray flux.