• Title/Summary/Keyword: nNOS

Search Result 381, Processing Time 0.033 seconds

Dynamics of Functional Genes and Bacterial Community during Bioremediation of Diesel-Contaminated Soil Amended with Compost

  • Hyoju Yang;Jiho Lee;Kyung-Suk Cho
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.471-484
    • /
    • 2023
  • Compost is widely used as an organic additive to improve the bioremediation of diesel-contaminated soil. In this study, the effects of compost amendment on the remediation performance, functional genes, and bacterial community are evaluated during the bioremediation of diesel-contaminated soils with various ratios of compost (0-20%, w/w). The study reveals that the diesel removal efficiency, soil enzyme (dehydrogenase and urease) activity, soil CH4 oxidation potential, and soil N2O reduction potential have a positive correlation with the compost amendment (p < 0.05). The ratios of denitrifying genes (nosZI, cnorB and qnorB) to 16S rRNA genes each show a positive correlation with compost amendment, whereas the ratio of the CH4-oxidizing gene (pmoA) to the 16S rRNA genes shows a negative correlation. Interestingly, the genera Acidibacter, Blastochloris, Erythrobacter, Hyphomicrobium, Marinobacter, Parvibaculum, Pseudoxanthomonas, and Terrimonas are strongly associated with diesel degradation, and have a strong positive correlation with soil CH4 oxidation potential. Meanwhile, the genera Atopostipes, Bacillus, Halomonas, Oblitimonas, Pusillimonas, Truepera, and Wenahouziangella are found to be strongly associated with soil N2O reduction potential. These results provide useful data for developing technologies that improve diesel removal efficiency while minimizing greenhouse gas emissions in the bioremediation process of diesel-contaminated soil.

Role of NO in Activation of $NF{\kappa}B$ by PM2.5 in Lung Epithelial Cells (PM2.5로 자극한 폐상피세포의 $NF{\kappa}B$ 활성화에 NO의 역할)

  • Kim, Kyoung-Ah;Nam, Hae-Yun;Mun, Je-Hyeok;Jeong, Jin-Sook;Lim, Young;Kai, Hirofumi
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.6
    • /
    • pp.616-626
    • /
    • 2002
  • Background : The present study was performed to further improve our understanding of molecular mechanisms involved in the activation of NFkB, a major transcriptional factor involved in the inflammatory response in the lung, by particulate matter in lung epithelial cells with an aerodynamic diameter of less than $2.5{\mu}m$(PM2.5). Materials and Methods : Immediate production of reactive oxygen species (ROS) and nitrogen species (RNS), with the PM2.5 induced expression of inducible nitric oxide synthase (iNOS), $I{\kappa}B$ degradation and $NF{\kappa}B$-dependent transcriptional activity, in 549 cells, were monitored. Addition, we also examined the effect of the iNOS inhibitor, L-N6-(1-iminoethyl) lysine hydrochloride (L-NIL), on the PM2.5-induced $NF{\kappa}B$ activation in A549 cells. Results : The rapid degradation of $I{\kappa}B$ and the increase of transcriptional activity of the $NF{\kappa}B$-dependent promotor were observed in A549 cells exposed to PM2.5. The immediate production of ROS in response to PM2.5 in A549 cells was not clearly detected, although immediate responses were observed in RAW264.7 cells. A 549 cells, cultured in the presence of PM2.5, produced an increase in NO, which was noticeably significant after 15 min of exposure with the expression of iNOS mRNA. The addition of L-NIL, an iNOS inhibitor, significantly inhibited the PM2.5-induced $I{\kappa}B$ degradation and the increase of the $NF{\kappa}B$-dependent transcriptional activity. Conclusion : These results suggest that PM2.5 stimulates the immediate production of RNS, leading to the activation of $NF{\kappa}B$ in the pulmonary epithelium.

Anti-inflammatory Effects of Rumohra adiantiformis Extracts Fermented with Bovista plumbea Mycelium in LPS-stimulated RAW 264.7 Cells (LPS로 자극된 RAW 264.7 세포에서 찹쌀떡버섯 균사체로 생물전환된 루모라고사리 추출물의 항염증 효과)

  • Ji-Hye Hong;Eun-Seo Jang;Myung-Chul Gil;Gye Won Lee;Young Ho Cho
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.471-480
    • /
    • 2023
  • This study was designed to evaluate the anti-inflammatory effects of Rumohra adiantiformis extracts fermented with Bovista plumbea mycelium (B-RAE) in LPS-stimulated RAW 264.7 cells. The total polyphenol and total flavonoid content of B-RAE were 379.26±7.77 mg/g and 50.85±3.08 mg/g, respectively. The results of measuring the antioxidant activity of B-RAE showed that it scavenges 2, 2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and superoxide anion radical in a dose-dependent manner. B-RAE inhibited nitric oxide (NO) production in a dose-dependent manner without affecting cell viability. The gene expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-lβ (IL-1β), and IL-6 was measured using real time quantitative reverse transcription PCR (qRT-PCR). We found that, compared to the LPS-treated group, B-RAE significantly reduced the mRNA levels of the pro-inflammatory cytokines in a concentration-dependent manner. The expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), the phosphorylation of transcription factors such as nuclear factor-κB (NF-κB), and the mitogen-activated protein kinase (MAPK) signaling pathway proteins were assessed using Western blot analysis. We found that B-RAE significantly suppressed the expression of iNOS and COX-2, but their expression was increased by LPS treatment. In addition, the phosphorylation of NF-κB and IκB, which was increased by LPS treatment, was reduced with B-RAE treatment. The effect of B-RAE on the phosphorylation of the MAPK signaling pathway proteins was measured, and the phosphorylation of extracellular signal-regulated kinase (ERK) and the p38 MAPK proteins decreased in a dose-dependent manner, while the phosphorylation of c-Jun N-terminal kinase (JNK) increased. These anti-inflammatory effects of B-RAE may thus have been achieved through the high antioxidant activity, the inhibition of NO production through the suppression of iNOS and COX-2 expression, the inhibition of the NF-κB pathway, and the suppression of pro-inflammatory cytokine expression.

The Application of Electron Microprobe Analysis in Geological Science (EPMA의 지질학(地質學)에의 응용(應用))

  • Sang, Ki Nam
    • Economic and Environmental Geology
    • /
    • v.17 no.4
    • /
    • pp.315-320
    • /
    • 1984
  • The newly discovered minerals found during 30 years have been discovered with election microprobe analysis, and several other new minerals have been described largely on the basis of probe analysis. Widely used types of instrument are the wavelength dispersive spectrometer (WDS) and the energy dispersive Spectrometer (EDS), with emitted X-ray dispersed by a curved crystal that is arranged to satisfy the Bragg equation ($n{\lambda}=2dsin{\theta}$). Atomic Nos of Z 4 to 92 can be analyzed quantitatively if they present in amount exceeding 50~100ppm. The application of the microprobe in mineralogical and geological research is quantitative chemical analysis of grains as small as a few microns in diameter, individual grains in a rock or can be analyzed in thin section and polished section, analysis can be made comparatively short time, methods in non-destructure, to photographical and crystallographical information. This paper was written in order to document data evaluation procedure for quantitative energy dispersive election probe analysis.

  • PDF

Molecular Mechanisms of Neutrophil Activation in Acute Lung Injury (급성 폐손상에서 호중구 활성화의 분자학적 기전)

  • Yum, Ho-Kee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.53 no.6
    • /
    • pp.595-611
    • /
    • 2002
  • Akt/PKB protein kinase B, ALI acute lung injury, ARDS acute respiratory distress syndrome, CREB C-AMP response element binding protein, ERK extracelluar signal-related kinase, fMLP fMet-Leu-Phe, G-CSF granulocyte colony-stimulating factor, IL interleukin, ILK integrin-linked kinase, JNK Jun N-terminal kinase, LPS lipopolysaccharide, MAP mitogen-activated protein, MEK MAP/ERK kinase, MIP-2 macrophage inflammatory protein-2, MMP matrix metalloproteinase, MPO myeloperoxidase, NADPH nicotinamide adenine dinucleotide phosphate, NE neutrophil elastase, NF-kB nuclear factor-kappa B, NOS nitric oxide synthase, p38 MAPK p38 mitogen activated protein kinase, PAF platelet activating factor, PAKs P21-activated kinases, PMN polymorphonuclear leukocytes, PI3-K phosphatidylinositol 3-kinase, PyK proline-rich tyrosine kinase, ROS reactive oxygen species, TNF-${\alpha}$ tumor necrosis factor-a.

Mechanism of the relaxant action of Trazodone in isolated rat aorta (흰쥐 대동맥에서 Trazodone의 혈관이완 작용기전)

  • Kim, Shang-jin;Kim, Jeong-gon;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.587-595
    • /
    • 2003
  • The aim of this study was to investigate trazodone's effect on vasorelaxation and blood pressure lowering and to examine its underlying mechanism of action in isolated thoracic aorta and anesthesized rats. Precontracted aortic rings with high KCl were relaxed with trazodone, at concentrations of $50{\mu}M$ or greater. However, precontracted rings with phenylephrine (PE) were relaxed with trazodone, at concentrations of $0.03{\mu}M$ or greater, in a concentration-dependent manner. These relaxant effects of trazodone on endothelium intact rat aortic rings were significantly greater than those on denuded rings. The trazodone-induced relaxations were suppressed by nitric oxide synthase (NOS) inhibitors, N(G)-nitro-L-arginine (L-NNA) and N(omega)-nitro-L-arginine methyl ester (L-NAME), guanylate cyclase inhibitors, methylene blue and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a $Ca^{2+}$-activated $K^+$ channel blocker, tetrabutylammonium (TBA), a $Ca^{2+}$ channel blocker, nifedipine, $Na^+$ channel blockers, lidocaine and procaine, and removal of extracellular $Na^+$, but not by aminoguanidine, 2-nitro-4-carboxyphenyl-n, n-diphenylcarbamate (NCDC), indomethacin, glibenclamide and clotrimazole. In vivo, infusion of trazodone elicited significant decrease in arterial blood pressure. Trazodone-induced decrease in blood pressure was markedly inhibited by pretreatment of intravenous injection of saponin, L-NNA, methylene blue, TBA, lidocaine or nifedipine. These findings suggest that the endothelium-dependent relaxation and decrease in blood pressure induced by trazodone is mediated by release of NO from the endothelium, activation of TBA-sensitive $Ca^{2+}$-activated $K^+$ channels or inhibition of $Ca^{2+}$ entry through voltage-gated channel.

Effects of Jagamcho-tang on the C6 Glial Cell Injured by LPS Combined PMA (자감초탕(炙甘草湯)이 LPS와 PMA에 의해 손상된 C6 glial 세포에 미치는 영향)

  • Cho, Nam-Su;Rhyu, Jun-Ki;Lee, In;Shin, Sun-Ho;Moon, Byung-Soon;Na, Young-Hoon
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.467-475
    • /
    • 2000
  • The water extracts of Jagamcho-tang has been used for treatment of arrhythmia and palpitation in oriental traditional medicine. Brain is provided with blood flow by heart. Jagamcho-tang has been studied on ischemia and infarction in heart. However, little is known about the mechanism by which the water extracts of Jagamcho-tang rescues brain cells from ischemic damages. To elucidate the protective mechanism on ischemic induced cytotoxicity, the effects of Jagamcho-tang on ischemia induced cytotoxicity and generation of nitric oxide(NO) are investigated in C6 glioma cells. Jagamcho-tang induce NO in a dose dependent manner up to 2.5mg/ml in C6 glioma cells. The pretreatment of Jagamcho-tang protect sodium nitroprusside(SNP) (2mM) induced cytotoxicity. This effect of Jagamcho-tang is mimicked by treatment by pretreatment of SNP($100{\mu}M$), an exogenous NO donor. NG-monomethyl-L-arginine($N^{G}MMA$), a specific inhibitor of nitric oxide synthase (NOS), significantly blocks the protective effects of Jagamcho-tang on cell toxicity by ischemia. In addition, lipopolysaccharide(LPS) and phorhol 12 myristate 13-acetate(PMA) treatment for 72h in C6 glial cells markedly induce NO, but treatment of the cells with the water extracts of Jagamcho-tang decrease nitrite formation in a dose dependent manner. In addition, LPS and PMA treatment for 72h induce severe cell death and LDH release into medium in C6 glial cells. However treatment of the cells with the water extracts of Jagamcho-tang dose not induce significant changes compare to control cells. Furthermore, the protective effects of the water extracts of Jagamcho-tang is mimicked by treatment of $N^{G}MMA$. Taken together, I suggest that the protective effects of the water extracts of Jagamcho-tang against ischemic brain damages may be mediated by regulation of iNOS during ischemic condition.

  • PDF

Mechanism of Hyperalgesia Following Cutaneous Inflammation by Complete Freund Adjuvant (Complete Freund Adjuvant에 의한 피부염증에서 통각과민현상의 기전)

  • Jeong, Yong;Leem, Joong-Woo;Chung, Seung-Soo;Kim, Yun-Suk;Yoon, Duck-Mi;Nam, Taick-Sang;Paik, Kwang-Se
    • The Korean Journal of Pain
    • /
    • v.13 no.2
    • /
    • pp.164-174
    • /
    • 2000
  • Background: After an injury to tissue such as the skin, hyperalgesia develops. Hyperalgesia is characterized by an increase in the magnitude of pain evoked by noxious stimuli. It has been postulated that in the mechanism of hyperalgesia (especially secondary hyperalgesia) and allodynia, a sensitization of central nervous system such as spinal dorsal horn may contribute to development of hyperalgesia. However, the precise mechanism is still unclear. In the present study, we investigated the roles of N-methyl-D-aspartate (NMDA) receptor and nitric oxide (NO) system in the mechanism of hyperalgesia, and their relations with c-fos expression Methods: Inflammation was induced by injection of complete Freund adjuvant (CFA) into unilateral hindpaw of Sprague-Dawley rat. Behavioral studies measuring paw withdrawal responses by von Frey filaments and paw withdrawal latencies by radiant heat stimuli and stainings of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase and c-fos immunoreactivity were performed. The effects of MK-801, an NMDA receptor blocker and $N^\omega$-nitro-L-arginine (L-NNA), a nitric oxide synthase (NOS) inhibitor were evaluated. Results: 1) Injection of CFA induced mechanical allodynia, mechanical hyperalgesia and thermal hyperalgesia. And it increased the number of NADPH-diaphorase positive neurons and c-fos expression neurons. 2) MK-801 inhibited mechanical hyperalgesia and thermal hyperalgesia induced by CFA and reduced the number of NADPH-diaphorase positive neurons and c-fos expression neurons. 3) L-NNA inhibited the thermal hyperalgesia and reduced the number of NADPH-diaphorase positive neurons, but did not affect the number of c-fos expression neurons. Conclusions: These results suggest that in the mechanism of mechanical hyperalgesia, NMDA receptor but not NO-system is involved and in the case of thermal hyperalgesia both NMDA receptor and NO system are involved. NO system did not affect the expression of c-fos, but c-fos expression and NOS activity were dependent on the activity of NMDA receptor.

  • PDF

Anti-inflammatory Effect of Castanopsis cuspidata Extracts in Murine Macrophage RAW 264.7 Cells (Murine Macrophage RAW 264.7 세포에서 구실잣밤나무 추출물의 항염증 효과)

  • Ko, Yeong-Jong;Song, Sang Mok;Hyun, Woo-Chol;Yang, Soo-Kyung;Song, Chang-Khil;Lee, Dong-Sun;Yoon, Weon-Jong
    • Korean Journal of Plant Resources
    • /
    • v.27 no.5
    • /
    • pp.439-446
    • /
    • 2014
  • This study describes a preliminary evaluation of the anti-inflammatory activity of Castanopsis cuspidata extracts. C. cuspidata was extracted using 80% ethanol and then fractionated sequentially with n-hexane, dichloromethane, ethylacetate, and butanol. To screen for anti-inflammatory agents effectively, we first examined the inhibitory effect of the C. cuspidata extracts on the production of pro-inflammatory factors and cytokines stimulated with lipopolysaccharide. In addition, we examined the inhibitory effect of C. cuspidata extracts on pro-inflammatory mediators (NO, iNOS, COX-2) in murine macrophage RAW 264.7 cells. The amounts of protein levels were determined by immunoblotting. Of the sequential solvent fractions of C. cuspidata, the n-hexane, dichloromethane and ethylacetate fractions inhibited the mRNA expression of pro-inflammatory cytokines (IL-$1{\beta}$ and IL-6), production of NO, and the protein level of iNOS and COX-2. These results suggest that C. cuspidata may have significant effects on inflammatory factors and may be provided as a possible anti-inflammatory therapeutic plant.

Effects of Jinmu-tang on the Osteoarthritis by MIA in Rats (진무탕(眞武湯)이 MIA 유도 골관절염 흰쥐 모델에 미치는 영향)

  • Yang, Doo-Hwa;Woo, Chang-Hoon;An, Hee-Duk
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.28 no.1
    • /
    • pp.19-31
    • /
    • 2018
  • Objectives The object of this study was to investigate the antioxidative and antiinflammatory effects of Jinmu-tang extract (JMT) on the Monosodium iodoacetate (MIA)-induced rat osteoarthritis. Methods To investigate the antioxidant capacities of JMT, we measured the total polyphenol and flavonoid, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-Azino-bis(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity. To evaluate the antioxidative and antiinflammatory effects of JMT, the rats were divided into 5 groups (n=8). Normal group was not induced by MIA and treated at all (N), control group was induced by MIA and not treated at all (Con), positive control group was induced by MIA and orally administered indomethacin 5 mg/kg (Indo) and experimental groups were induced by MIA and orally administered JMT 100 mg/kg (JMT100) and JMT 200 mg/kg (JMT200) for 4 weeks. The changes of anti-type II collagen antibody in serum, heme oxygenase-1 (HO-1), phosphorylated inhibitor of ${\kappa}B{\alpha}$ ($p-I{\kappa}B{\alpha}$), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and tumor necrosis factor alpha ($TNF-{\alpha}$) in knee joint tissue and histopathological observation (Hematoxylin & Eosin and Safranin-O stain) were measured. Results Total polyphenol and flavonoid levels of JMT were $26.90{\pm}0.33mg/g$ and $6.02{\pm}0.34mg/g$. $IC_{50}$ of L-ascorbic acid and JMT of DPPH radical scavenging activity were $1.35{\pm}0.07{\mu}g/ml$ and $52.95{\pm}0.97{\mu}g/ml$. $IC_{50}$ of L-ascorbic acid and JMT of ABTS radical scavenging activity were $3.18{\pm}0.02{\mu}g/ml$ and $91.49{\pm}1.74{\mu}g/ml$. In serum, the anti-type II collagen antibody levels of JMT100 and JMT200 groups were decreased significantly. In knee joint tissue, the HO-1 level of JMT200 was increased significantly. The $p-I{\kappa}B{\alpha}$ and $TNF-{\alpha}$ levels of JMT200 were decreased significantly. The COX-2 and iNOS levels of JMT groups were decreased significantly. In histopathological observation, in comparison with Con, synovial tissue, cartilage and proteoglycan of JMT100 and JMT200 were well preserved. Conclusions According to the results, It is considered that JMT has antioxidant and antiinflammatory effects for MIA-induced rat osteoarthritis, so it could be applied to osteoarthritis treatment.