• Title/Summary/Keyword: nHydroxyapatite

Search Result 77, Processing Time 0.179 seconds

Preparation and characterization of zirconium nitride and hydroxyapatite layered coatings for biomedical applications

  • Nathanael, A. Joseph;Lee, Jun-Hui;Hong, Sun-Ik
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.102.2-102.2
    • /
    • 2012
  • Different layers of zirconium nitride (ZrN) and hydroxyapatite (HA) coatings were prepared on cp Ti substrate for biomedical applications. The main idea is to improve the mechanical strength as well as the biocompatibility of the coating. ZrN is known for its high mechanical strength, corrosion resistance. HA is well known for its biocompatibility properties. Hence, in this study, both materials were coated on a cp Ti substrate with bottom layer with ZrN for good bonding with substrate and the top layer with HA for induce bioactivity. Middle layer was formed by a composite of HA and ZrN. Detail analyses of the layered coatings for its structural, morphological, topographical properties were carried out. Then the mechanical property of the layered coatings was analyzed by nanoindentation. Biomimetic growths of apatite on the functionally graded coatings were determined by simulated body fluid method. This study provides promising results to use this kind of coatings in biomedical field.

  • PDF

Pantoea agglomeranso에 의한 Hydroxyapatite의 인산화

  • Im, Won-Bong;Jeong, Il;Lee, Gi-Yeong;Kim, Do-Man;Kim, Si-Uk;Park, Don-Hui
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.414-417
    • /
    • 2001
  • This research was compared the amount of phosphate solublized by Pantoea agglomerans which can solublize the insoluble phosphate salt hydroxyapatite with the phosphate produced by being treated with various acids. When P. agglomerans grows in the BY medium containing potassium dihydrogenphosphate of phosphate source without hydroxyapatite, it consumed 361mg/L phosphate, during 72hours cultivation. When 4% hydroxapatite was treated with 0.01N citric acid and oxalic aicd, the amount of solublized phosphate was 702mg/L and 537mg/L more than that by P.agglomerans. The maximum amount of solublized phosphate by P. agglomerans was 465mg/L after 48 hours cultivation.

  • PDF

The Effect of Chitosan on Hydroxyapatite Precipitation

  • Hatim, Zineb;Bakasse, Mina;Kheribech, Abdelmoula;Abida, Fatima;Bourouisse, Abderrahim
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.484-485
    • /
    • 2006
  • The process of coprecipitation of biocomposite hydroxyapatite/chitosan from aqueous solution at low temperature in alkali environnement was examined. We have shown that initially we have the formation of amorphous octocalcium phosphates $(Ca_8(HPO_4)(PO_4)_5,\;nH_2O:\;OCP)$ and the transferring from OCP to amorphous calcium phosphate $(Ca_9(PO_4)_3,\;nH_2O:\;TCP)$, and then from TCP to calcium-deficient hydroxyapatite $(Ca_{10-X}\;(HPO_4)_X(PO_4)_{6-x}(OH)_{2-X}\;:\;ACP)$ and hydroxyapatite $(Ca_{10}(PO_4)_6(OH)_2\;:\;HAP)$. The transformation of ACP to HAP was inhibited in the presence of chitosan. The result suggests that there is an affinity binding between ACP and chitosan and subsequently blocking the active growth site of ACP.

  • PDF

The Surface Characteristic Changes of Hydroxyapatite Coated Ti Disc When Immersed in NaCl Solution (NaCl 수용액에 담근 Hydroxyapatite 코팅된 타이타늄 시편의 표면 변화)

  • Baek, Yeon-Wha;Kim, Myung-Joo;Kwon, Ho-Beom;Lim, Young-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.4
    • /
    • pp.339-347
    • /
    • 2012
  • In previous studies, methods for enhancing cellular response on the Hydroxyapatite coated implant surface were described. In this study, the changes of surface characteristics such as surface roughness, contact angle, surface energy and surface morphology were observed when Hydroxyapatite coated Ti discs were immersed in NaCl solution for various time. Hydroxyapatite coated Ti discs were immersed in 0.9% NaCl solution for 7, 14 and 21 days at $37^{\circ}C$. The control group comprises dry identical discs not immersed in a solution. (n=3) All discs were dried in air completely and the surface roughness was measured using confocal laser scanning microscopy(CLSM). Static contact angle was recorded by video contact angle analyzer after dropping distilled water on the surface. The surface energy was calculated from contact angles of the three liquids. Surface was observed using a field emission-scanning electron microscope(FE-SEM). As a result, the surface roughness of immersed Hydroxyapatite coated Ti discs increased significantly and the contact angle decreased comparing with control group discs. The surface energy of immersed discs increased except for discs immersed for 14 days.

A study on the mechanical properties of TiN/DLC based functionally graded coatings

  • Song, Young-Sik;Kim, J.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.59-59
    • /
    • 2003
  • In recent, various functional coatings on artificial tooth implants have been conducted to enhance the bonding strength between implants and bones. Despite of these efforts, some previous reports argued that an adhesion strength between titanium implant and the final coatings like hydroxyapatite(HA) is weaker than the strength between coating and bone. In order to increase the adhesion force between the final coating and implant surface, TiN/DLC based functionally graded coating, which has higher mechanical strength than the titanium implant, was applied as a middle layer between titanium implant and final coating. Particularly we finally coated a biocompatible hydroxyapatite film on the DLC layer and examined the mechanical properties. As a result, TiN/DLC based functionally graded coating showed the higher adhesion strength compared with hydroxyapatite single layer coating on the titanium implant.

  • PDF

Enhanced Bone-Regenerative Performance of Porous Hybrid Scaffolds by Surface Immobilization of Nano-Hydroxyapatite

  • Lee, Sang-Cheon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.12.1-12.1
    • /
    • 2009
  • Nano-hydroxyapatite (N-HAp)has shown the pivotal role in producing bone-regenerative materials since it has similarity to natural bone minerals in terms of size, morphology, and the composition. Currently, the combination of biopolymers and N-HAp is recognizedas an attractive approach in generating hybrid scaffolds for bone tissueengineering. Surface engineering is an important issue since it determines whether cells can effectively adhere and proliferate on porous scaffolds. We aim to develop a synthetic approach to porous 3D scaffolds by immobilizing N-HAp on pore surfaces. The discrete nano-level anchoring of N-HAp on the scaffold pore surface is achieved using surface-repellent stable colloidal N-HAp with surface phosphate functionality. This rational surface engineering enables surface-anchored N-HAp to express its overall intrinsic bioactivity,since N-HAp is not phase-mixed with the polymers. The porous polymer scaffolds with surface-immobilized N-HAp provide more favorable environments thanconventional bulk phase-mixed polymer/N-HAp scaffolds in terms of cellular interaction and growth. In vitro biological evaluation using alkalinephosphatase activity assay supports that immobilized N-HAp on pore surfaces of polymer scaffolds contributed to the more enhanced in vitro osteogenicpotential. Besides, the scaffolds with surface-exposed N-HAp provide favorable environments for enhanced in vivo bone tissue growth, estimated by characteristic biomarkers of bone formation such as collagen. The results suggest that newly developed hybrid scaffolds with surface-immobilized N-HApmay serve as a useful 3D substrate with pore surfaces featuring excellent bonetissue-regenerative properties. Acknowledgement. This research was supported by a grant (code #: 2009K000430) from 'Center for Nanostructured Materials Technology' under '21st Century Frontier R&D Programs' of the Ministry of Education, Science and Technology, Korea.

  • PDF

Partial oxidation of n-butane over ceria-promoted nickel/calcium hydroxyapatite (세리아가 첨가된 니켈/칼슘 하이드록시 아파타이트 촉매 상의 부탄 부분산화 연구)

  • Kwak, Jung-Hun;Lee, Sang-Yup;Kim, Mi-So;Nam, Suk-Woo;Lim, Tae-Hoon;Hong, Seong-Ahn;Yoon, Ki-June
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.89-92
    • /
    • 2007
  • Partail oxidation(POX) of n-butane was investigated in this research by employing ceria-promoted Ni/calcium hydroxyapatite catalysts ($Ce_xNi_{2.5}Ca_{10}(OH)_2(PO_4)_6$ ; x = $0.1{\sim}0.3$) which had recently been reported to exhibit good catalytic performance in POX of methane and propane. The experiments were carried out with changing ceria content, $O_2/n-C_4H_{10}$ ratio and temperature. As the $O_2/n-C_4H_{10}$ feed ratio increased up to 2.75, n-$C_4H_{10}$ conversion and $H_2$ yield increased and the selectivity of methane and other hydrocarbons decreased. But with $O_2/n-C_4H_{10}$ = 3.0, $n-C_4H_{10}$ conversion and $H_2$ yield decreased. This is considered due to that too much oxygen may inhibit the reduction of Ni or induce the oxidation of Ni, which results in poor catalytic activity. The optimum $O_2/n-C_4H_{10}$ ratio lay between 2.50 and 2.75. $Ce_{0.1}Ni_{2.5}Ca_{10}(OH)_2(PO_4)_6$ showed the highest $n-C_4H_{10}$ conversion and $H-2$ yield on the whole. In durability tests, higher hydrogen yield and better catalyst stability were obtained with the $O_2/n-C_4H_{10}$ ratio of 2.75 than with the ratio of 2.5.

  • PDF

Effect of hydroxyapatite on critical-sized defect

  • Kim, Ryoe-Woon;Kim, Ji-Hyoung;Moon, Seong-Yong
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.26.1-26.6
    • /
    • 2016
  • Background: Xenologous or synthetic graft materials are commonly used as an alternative for autografts for guided bone regeneration. The purpose of this study was to evaluate effectiveness of carbonate apatite on the critical-size bone defect of rat's calvarium. Methods: Thirty-six critical-size defects were created on 18 adult male Sprague-Dawley rat calvaria under general anesthesia. Calvarial bones were grinded with 8 mm in daimeter bilaterally and then filled with (1) no grafts (control, n = 10 defects), (2) bovine bone mineral (Bio-$Oss^{(R)}$, Geistlich Pharma Ag. Swiss, n = 11 defects), and (3) hydroxyapatite ($Bongros^{(R)}$, Bio@ Inc., Seongnam, Korea, n = 15 defects). At 4 and 8 weeks after surgery, the rats were sacrificed and all samples were processed for histological and histomorphometric analysis. Results: At 4 weeks after surgery, group 3 ($42.90{\pm}9.33%$) showed a significant difference (p < 0.05) compared to the control ($30.50{\pm}6.05%$) and group 2 ($28.53{\pm}8.62%$). At 8 weeks after surgery, group 1 ($50.21{\pm}6.23%$), group 2 ($54.12{\pm}10.54%$), and group 3 ($50.92{\pm}6.05%$) showed no significant difference in the new bone formation. Conclusions: $Bongros^{(R)}$-HA was thought to be the available material for regenerating the new bone formation.

Syntjesos of Stoichiometric Hydroxyapatite Powder by $CO_3$$^{2-}$ Substitution During Precipitation ($CO_3$$^{2-}$치환을 이용한 화학양론조성 수산화 아파타이트 분말의 합성)

  • 전성재;김석영;한주환
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.3
    • /
    • pp.209-218
    • /
    • 1998
  • Ca-deficiency frequently observed in the hydroxyapatite powders prepared by precipitation which is known to be deleterious for its application to biomaterials was prevented by the technique developed in this study. In addition the prepared powder has been revealed to be quite active that full density is achieved at temperatures as low as 100$0^{\circ}C$ Instead of using N2 air was chosen as the processing atmosphere during the precipitation and aging of hydroxyapatite. {{{{ {CO }`_{3 } ^{2- } }} ions from the processing atmosphere(air) substitute partly for {{{{ {PO }`_{4 } ^{3- } }} ions in the hydroxyapatite and its content can be controlled by pH of the solution where the pre-cipitation reaction occurs.

  • PDF

Comparative study of removal torque of 3 different hydroxyapatite coated implants in the femur of rabbits (가토의 대퇴골에 식립한 3종류의 수산화인회석 코팅 임플란트에 대한 제거회전력 비교 연구)

  • Kim, Sang-Soo;Lee, Ju-Hyung;Yu, Seok-Hyun;Lee, Hyung-Ju;Moon, Jee-Won;Park, In-Sook;Sohn, Dong-Seok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.1
    • /
    • pp.49-53
    • /
    • 2011
  • Introduction: This study compared the strength of osseointegration as determined by the resistance to reverse torque rotation of three different hydroxyapatite coated implants in the rabbit femur model. Materials and Methods: Three hydroxyapatite coated implants (HAPTITE), Tapered Screw-Vent (TSV) and BioTite-H - were used. A total of 40 implants were placed in the femur of 20 adult male rabbits. The animals were divided into two groups. In group A (n=10); one HAPTITE was placed into each right femur and one TSV was placed into each left femur. In group B (n=10); one HAPTITE was placed into each right femur and one BioTite-H was placed into each left femur. Five rabbits of each group were sacrificed at 4 and 8 weeks. The implants were removed by reverse torque rotation using a digital torque-measuring device. A total of 40 implants in 20 rabbits were used for the removal torque measurements. Results: In the Group A, 4 weeks after implant placement, the mean removal torque for the HAPTITE and TSV was $70.7{\pm}31.6$ N cm and $28.9{\pm}15.1$ N cm, respectively. Eight weeks after implant placement, the mean removal torque for the HAPTITE and TSV was $87.9{\pm}26.2$ N cm and $54.9{\pm}22.4$ N cm, respectively. In the Group B, 4 weeks after implant placement, the mean removal torque for the HAPTITE and BioTite-H was $58.0{\pm}29.6$ N cm and $37.7{\pm}14.1$ N cm, respectively. Eight weeks after implant placement, the mean removal torque for the HAPTITE and BioTite-H was $91.4{\pm}47.1$ N cm and $30.8{\pm}9.8$ N cm. HAPTITE showed a higher removal torque than the other implants. Conclusion: These results suggest that HAPTITE increases the strength of osseointegration significantly as determined by the resistance to reverse torque rotation.