• 제목/요약/키워드: nActivated Carbon

검색결과 368건 처리시간 0.025초

Carbon monoxide activates large-conductance calcium-activated potassium channels of human cardiac fibroblasts through various mechanisms

  • Bae, Hyemi;Kim, Taeho;Lim, Inja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권3호
    • /
    • pp.227-237
    • /
    • 2021
  • Carbon monoxide (CO) is a cardioprotectant and potential cardiovascular therapeutic agent. Human cardiac fibroblasts (HCFs) are important determinants of myocardial structure and function. Large-conductance Ca2+-activated K+ (BK) channel is a potential therapeutic target for cardiovascular disease. We investigated whether CO modulates BK channels and the signaling pathways in HCFs using whole-cell mode patch-clamp recordings. CO-releasing molecules (CORMs; CORM-2 and CORM-3) significantly increased the amplitudes of BK currents (IBK). The CO-induced stimulating effects on IBK were blocked by pre-treatment with specific nitric oxide synthase (NOS) blockers (L-NG-monomethyl arginine citrate and L-NG-nitroarginine methyl ester). 8-bromo-cyclic GMP increased IBK. KT5823 (inhibits PKG) or ODQ (inhibits soluble guanylate cyclase) blocked the CO-stimulating effect on IBK. Moreover, 8-bromo-cyclic AMP also increased IBK, and pre-treatment with KT5720 (inhibits PKA) or SQ22536 (inhibits adenylate cyclase) blocked the CO effect. Pre-treatment with N-ethylmaleimide (a thiol-alkylating reagent) also blocked the CO effect on IBK, and DL-dithiothreitol (a reducing agent) reversed the CO effect. These data suggest that CO activates IBK through NO via the NOS and through the PKG, PKA, and S-nitrosylation pathways.

Preparation of AC/TiO2 Composites from Activated Carbon Modified by HNO3 and Their Photocatalytic Activity

  • Chen, Ming-Liang;Oh, Won-Chun
    • Carbon letters
    • /
    • 제8권2호
    • /
    • pp.108-114
    • /
    • 2007
  • In this work, activated carbon (AC) after $HNO_3$ modification was used as the support during the production of supported $TiO_2$ to increase the high deposition efficiency and the photocatalytic activity. The results of $N_2$ adsorption showed that the BET surface area of samples decreased with an increasing of the concentration of $HNO_3$ due to the penetration of $TiO_2$. From XRD data, a single crystal structure of anatase peak was observed in diffraction patterns for the AC coated with titanium complexes. From the SEM results, almost all particles were aggregated with each other at the carbon surface and AC was covered with $TiO_2$ particles in all of the samples. The EDX spectra show the presence of C, O, Ti and other elements. It was also observed a decreasing of amount of C content with increasing Ti and O content from the EDX. The results of FT-IR revealed that the modified AC contained more surface oxygen bearing groups than that of the original AC. The effect of surface acidity and basity calculated from Boehm titration method was also evaluated from correlations as a function of NaOH, $NaHCO_3$, and $Na_2CO_3$ uptake. The surface modification of AC by $HNO_3$ leads to an increase in the catalytic efficiency of AC/$TiO_2$ catalysts, and the catalytic efficiency increases with increasing of $HNO_3$ concentration.

KOH Activated Nitrogen Doped Hard Carbon Nanotubes as High Performance Anode for Lithium Ion Batteries

  • Zhang, Qingtang;Li, Meng;Meng, Yan;Li, An
    • Electronic Materials Letters
    • /
    • 제14권6호
    • /
    • pp.755-765
    • /
    • 2018
  • In situ nitrogen doped hard carbon nanotubes (NHCNT) were fabricated by pyrolyzing tubular nitrogen doped conjugated microporous polymer. KOH activated NHCNT (K-NHCNT) were also prepared to improve their porous structure. XRD, SEM, TEM, EDS, XPS, Raman spectra, $N_2$ adsorption-desorption, galvanostatic charging-discharge, cyclic voltammetry and EIS were used to characterize the structure and performance of NHCNT and K-NHCNT. XRD and Raman spectra reveal K-NHCNT own a more disorder carbon. SEM indicate that the diameters of K-NHCNT are smaller than that of NHCNT. TEM and EDS further indicate that K-NHCNT are hollow carbon nanotubes with nitrogen uniformly distributed. $N_2$ adsorption-desorption analysis reveals that K-NHCNT have an ultra high specific surface area of $1787.37m^2g^{-1}$, which is much larger than that of NHCNT ($531.98m^2g^{-1}$). K-NHCNT delivers a high reversible capacity of $918mAh\;g^{-1}$ at $0.6A\;g^{-1}$. Even after 350 times cycling, the capacity of K-NHCNT cycled after 350 cycles at $0.6A\;g^{-1}$ is still as high as $591.6mAh\;g^{-1}$. Such outstanding electrochemical performance of the K-NHCNT are clearly attributed by its superior characters, which have great advantages over those commercial available carbon nanotubes ($200-450mAh\;g^{-1}$) not only for its desired electrochemical performance but also for its easily and scaling-up preparation.

중유회 탈취패널에 있어서 활성탄과 규조토의 탈취성능 영향평가 (Effect of Activated Carbon and Diatomite on Deodorant Efficiency of Recycled Fly Ash Panel)

  • 김민호;김영규;;김세중;김남수;홍성엽;한혜철
    • 대한환경공학회지
    • /
    • 제32권6호
    • /
    • pp.625-630
    • /
    • 2010
  • 본 연구는 발전소등에서 발생하는 중유회를 재활용한 탈취패널 제조시 활성탄, 규조토등의 첨가제를 활용함으로써 포름알데히드 및 톨루엔에 대한 제거성능을 향상시켜 중유회의 탈취패널 원료로서의 사용가능성을 확인하였다. 단일 첨가제를 사용하여 제작된 중유회 재활용 탈취패널의 경우 포름알데히드에 대해서는 93% 이상, 톨루엔에 대해서는 97% 이상의 제거성능을 보였으나 기준 패널에 비하여 압축강도가 27~63% 감소하였다. 반면에 두 가지 첨가제를 여러 가지 비율로 혼합하여 제조된 것 중 활성탄과 규조토가 5 wt%씩 첨가된 패널은 포름알데히드 84%, 톨루엔 96%의 제거성능을 보였으며 압축강도는 기준패널보다 32%증가하였다. 따라서 첨가제의 혼합사용을 통하여 중유회재활용 탈취패널을 제조할 경우 유해가스 제거성능과 패널의 강도를 향상 시키는 것이 확인되었다.

AC 및 ACF에 포집된 혼합 유기용제의 열탈착 방법에 따른 분석 및 평가 (Analysis and Assessment by Thermal Desorption Method of Mixed Organic Solvents Collected on Activated Carbon(AC) and Activated Carbon Fiber(ACF))

  • 원정일;김기환;신창섭
    • 환경위생공학
    • /
    • 제16권1호
    • /
    • pp.72-90
    • /
    • 2001
  • This study was conducted to evaluate desorption efficiencies accuracy and precision by $CS_2$ and thermal desorption method for polar and non-polar organic solvents collected on activated carbon(AC), activated carbon fiber(ACF), carbosieve SIII, materials tested were Methyl alcohol, n-Hexane, Benzene, Trichloroethylene, Methyl isobutyl ketone and methyl cellosolve acetate and six different concentration levels of samples were made. The results were as follows ; 1. Accuracy on kind adsorbent and desorption method was low. In case of $CS_2$ desorption solvent, Overall B and Overall CV on AC and ACF were 43% and 6.63%, respectively. In case of thermal desorption method, accuracy of thermal desorption method appeared higher than solvent desorption method by AC 18.0%, 3.54%, ACF 2.6%, 2.57%, Carbosieve SIII 13.7% and 1.97%, respectively. 2. In the concentration level III, accuracy of thermal desorption method on adsorbent was in order as follow ; ACF > Carbosieve SIII > AC in the methyl alcohol and Carbosieve SIII > ACF > AC in the rest of them all subject material and Concentration levels showed good precision at EPA recommend standard (${\leq}{\;}30%$) 3. DEs by type of organic solvent adsorbent and desorption method are as follows ; In the case that desorption solvent is $CS_2$, DE of Methyl alcohol is AC 47.5%, DE of all materials is ACF about 50%. In the case of thermal desorption method, DE of Methyl alcohol is AC 82.0%, ACF 97.4%, Carbosieve SIII 86.3%. DE of the later case is prominently improved more than one of former. In particular, Except that DE of EGMEA is ACF 88.5%, DE of the rest of it is more than 95% which is recommend standard MDHS 72. With the result of this study, in order to measure various organic solvent occurring from the working environment, in the case of thermal desorption method, we can get the accurate exposure assessment, reduce the cost, and use ACF as thermal desorption sorbent which available with easy.

  • PDF

Batch and Flow-Through Column Studies for Cr(VI) Sorption to Activated Carbon Fiber

  • Lee, In;Park, Jeong-Ann;Kang, Jin-Kyu;Kim, Jae-Hyun;Son, Jeong-Woo;Yi, In-Geol;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • 제19권2호
    • /
    • pp.157-163
    • /
    • 2014
  • The adsorption of Cr(VI) from aqueous solutions to activated carbon fiber (ACF) was investigated using both batch and flow-through column experiments. The batch experiments (adsorbent dose, 10 g/L; initial Cr(VI) concentration, 5-500 mg/L) showed that the maximum adsorption capacity of Cr(VI) to ACF was determined to 20.54 mg/g. The adsorption of Cr(VI) to ACF was sensitive to solution pH, decreasing from 9.09 to 0.66 mg/g with increasing pH from 2.6 to 9.9; the adsorption capacity was the highest at the highly acidic solution pHs. Kinetic model analysis showed that the Elovich model was the most suitable for describing the kinetic data among three (pseudo-first-order, pseudo-second-order, and Elovich) models. From the nonlinear regression analysis, the Elovich model parameter values were determined to be ${\alpha}$ = 162.65 mg/g/h and ${\beta}$ = 2.10 g/mg. Equilibrium isotherm model analysis demonstrated that among three (Langmuir, Freundlich, Redlich-Peterson) models, both Freundlich and Redlich-Peterson models were suitable for describing the equilibrium data. In the model analysis, the Redlich-Peterson model fit was superimposed on the Freundlich fit. The Freundlich model parameter values were determined to be $K_F$ = 0.52 L/g and 1/n = 0.56. The flow-through column experiments showed that the adsorption capacities of ACF in the given experimental conditions (column length, 10 cm; inner diameter, 1.5 cm; flow rate, 0.5 and 1.0 mL/min; influent Cr(VI) concentration, 10 mg/L) were in the range of 2.35-4.20 mg/g. This study demonstrated that activated carbon fiber was effective for the removal of Cr(VI) from aqueous solutions.

활성탄에 담지된 귀금속 촉매를 이용한 셀룰로우스의 폴리올로의 전환 (Conversion of Cellulose into Polyols over Noble Metal Catalysts Supported on Activated Carbon)

  • 유수진;김샛별;김용태;박은덕
    • 청정기술
    • /
    • 제16권1호
    • /
    • pp.19-25
    • /
    • 2010
  • 결정성의 셀룰로우스를 수소분위기하에서 다양한 귀금속 촉매를 이용하여 폴리올로 전환시키는 연구를 수행하였다. 촉매는 단일 귀금속(Pt, Ru, Ir, Rh, Pd)을 활성탄에 습식함침법으로 담지시켜서 제조하였으며, Pt/$\gamma-Al_2O_3$와 Pt/H-mordenite를 비교촉매로 사용하였다. 생성물은 고압액체크로마토그래피로 분석하였다. 촉매는 질소흡착, X-선 회절법, 유도결합플라즈마분광법(ICP-AES), 수소-승원환원분석($H_2$-TPR), 그리고 일산화탄소 화학흡착을 통하여 분석하였다. 셀룰로우스의 전환율은 사용한 촉매와 연관관계가 낮은 것으로 나타났으며 활성탄에 담지된 귀금속 촉매중에서 Pt/AC가 높은 폴리올의 수득률에 바람직한 것으로 조사되었다.

외부 반송이 있는 생물활성탄담체(BACC) 공정에 의한 오수 중 질소${\cdot}$인의 동시 제거

  • 이호경;권신;조무환
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.414-417
    • /
    • 2000
  • 기존의 BACC process의 가장 큰 단점은 탈질이 잘 이루어지지 않는다는 점인데 이것을 보완한 modified BACC process의 경우 실제오수를 사용하여 외부 반송비 따른 질소 및 인의 제거율을 살펴보면 외부 반송비가 200%일 때 $CODC_{Cr}$의 제거율은 평균 $96.3{\sim}95.7%$ 기존의 BACC process와 비슷하나 T-N 제거율은 $88.3{\sim}95.7%$로 월등히 우수한 결과를 보여주고 있다. 충진율 실험에서는 Table 2에서 보는 바와 같이 큰 차이는 없었다.

  • PDF

Preparation and photocatalytic activity of ACF/$TiO_2$ composites by using titanium n-butoxide and acid modified activated carbon fiber

  • Oh, Won-Chun;Kwon, Ho-Joug;Chen, Ming-Liang;Zhang, Feng-Jun;Ko, Weon-Bae
    • 한국결정성장학회지
    • /
    • 제19권3호
    • /
    • pp.144-151
    • /
    • 2009
  • Photocatalytic degradation of methylene blue (MB) in aqueous solution was investigated using $TiO_2$ coated on various acid modified activated carbon fiber (ACF). The ACFs/$TiO_2$ composites were prepared from titanium n-butoxide (TNB) as titanium precursor and various acid modified ACFs. The prepared samples are heat treated at 973 K. Then the ACF/$TiO_2$ composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX). Moreover, photocatalytic degradation of MB by the ACF/$TiO_2$ composites was determined under UV irradiation. The results shows that the photocatalytic activity of ACF/$TiO_2$ composites ($AT1{\sim}AT4$) prepared with TNB and various acid modified ACF was much better than that of ACF/$TiO_2$ composite (AT) prepared with TNB and non-acid modified ACF, and the effects improved with order of sample AT3 > AT4 > AT1 > AT2.

KOH-activated graphite nanofibers as CO2 adsorbents

  • Yuan, Hui;Meng, Long-Yue;Park, Soo-Jin
    • Carbon letters
    • /
    • 제19권
    • /
    • pp.99-103
    • /
    • 2016
  • Porous carbons have attracted much attention for their novel application in gas storage. In this study, porous graphite nano-fiber (PGNFs)-based graphite nano fibers (GNFs) were prepared by KOH activation to act as adsorbents. The GNFs were activated with KOH by changing the GNF/KOH weight ratio from 0 through 5 at 900℃. The effects of the GNF/KOH weight ratios on the pore structures were also addressed with scanning electron microscope and N2 adsorption/desorption measurements. We found that the activated GNFs exhibited a gradual increase of CO2 adsorption capacity at CK-3 and then decreased to CK-5, as determined by CO2 adsorption isotherms. CK-3 had the narrowest micropore size distribution (0.6–0.78 nm) among the treated GNFs. Therefore, KOH activation was not only a significant method for developing a suitable pore-size distribution for gas adsorption, but also increased CO2 adsorption capacity as well. The study indicated that the sample prepared with a weight ratio of ‘3’ showed the best CO2 adsorption capacity (70.8 mg/g) as determined by CO2 adsorption isotherms at 298 K and 1 bar.