• Title/Summary/Keyword: nActivated Carbon

Search Result 366, Processing Time 0.024 seconds

Simultaneous Removal of Nitrogen and Phosphorus by Rotating Biological Activated Carbon Process (회전생물활성탄[RBAC] 공정을 이용한 질소.인의 동시 제거)

  • Nam, Beom-Sik;Lee, Yeong-Ho;Jo, Mu-Hwan
    • KSBB Journal
    • /
    • v.14 no.5
    • /
    • pp.606-610
    • /
    • 1999
  • The purpose of this study was to develop and evaluate rotating biological activated carbon(RBAC) process for nitrogen and phosphorus removal with increasing loading rate. The removal efficiency of $NH_4^+$-N was observed to be higher than 96.5% at all runs, and the relative stable levels of effluent $NH_4^+$-N, $NO_2^-$-N, $NO_3^-$-N could be maintained. The removal efficiency of T-N was observed to be higher than 90%, except RUN 1. The T-P removal efficiency was kept between 32.7% and 49.8%, and the amount of biomass was kept between 269 mg/g support and 473 mg/g support with varying loading rate.

  • PDF

Removal of Ammonia Nitrogen and Organics from Piggery Wastewater Using BACC Process-II. Effect of COD/N on Removal of NItrogen and Organics (BACC를 이용한 축산폐수의 암모니아성 질소 및 유기물의 제거 II. COD/N비가 질소 및 유기물 제거에 미치는 영향)

  • 성기달;류원률;김인환;조무환
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.140-145
    • /
    • 2001
  • To treat piggery wastewater containing refractory compounds including nitrogen, physical treatments using zeolite and biological processes were investigated. In biogical treatment, the removal efficiencies of organics and nitrogen in bioreador using BACC (Biological Activated Carbon Cartridge) media filled with granule activated carbon were examined. The best removal efficiencies achieved for TKN and COD(sub)cr were 82% and 53% respectively, when zeolite dosage was 300 g/L. Specific nitrogen removal ability was 3.2 mg/g at a zeolite dosage of 50 g/L, whereas specific nitrogen removal ability was 1.8 mg/g at a zeolite dosage of 300 g/L. The increased of C/N ratio resulting from the removal of nitrogen using zeolite led to an increase in removal efficiency of organics. As C/N ratio was increased to 2.0, 2.44 and 6.58 at a HRT of 48 hours in a BACC bioreactor, removal efficiencies of COD(sub)cr were increased to 53.5%, 57.4% and 80.6%. The removal efficiency of wastewater using a zeolite dosage of 399 g/L was increased by 27.1% compared to that of control treatment.

  • PDF

Preparation of Coffee Grounds Activated Carbon-based Supercapacitors with Enhanced Properties by Oil Extraction and Their Electrochemical Properties (오일 추출에 의해 물성이 향상된 커피 찌꺼기 활성탄소기반 슈퍼커패시터 제조 및 그 전기화학적 특성)

  • Kyung Soo Kim;Chung Gi Min;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.426-433
    • /
    • 2023
  • Capacitor performance was considered using coffee grounds-based activated carbon produced through oil extraction and KOH activation to increase the utilization of boiwaste. Oil extraction from coffee grounds was performed by solvent extraction using n-Hexane and isopropyl alcohol solvents. The AC_CG-Hexane/IPA produced by KOH activation after oil extraction increased the specific surface area by up to 16% and the average pore size by up to 2.54 nm compared to AC_CG produced only by KOH activation without oil extraction. In addition, the pyrrolic/pyridinic N functional group of the prepared activated carbon increased with the extraction of oil from coffee grounds. In the cyclic voltage-current method measurement experiment, the specific capacitance of AC_CG-Hexane/IPA at a voltage scanning speed of 10 mV/s is 133 F/g, which is 33% improved compared to the amorphous capacity of AC_CG (100 F/g). The results show improved electrochemical properties by improving the size and specific surface area of the mesopores of activated carbon by removing components from coffee grounds oil and synergistic effects by increasing electrical conductivity with pyrrolic/pyridinic N functional groups. In this study, the recycling method and application of coffee grounds, a bio-waste, is presented, and it is considered to be one of the efficient methods that can be utilized as an electrode material for high-performance supercapacitors.

Study of Equilibrium, Kinetic and Thermodynamic Parameters about Fluorescein Dye Adsorbed onto Activated Carbon (활성탄을 이용한 플루오레세인 염료 흡착에 대한 평형, 동력학 및 열역학 파라미터의 연구)

  • Lee, Jong-Jib;Um, Myeong Heon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.450-455
    • /
    • 2012
  • The paper includes the utlization of an activated carbon as a potential adsorbent to remove a hazardous fluorescein dye from an aqueous solution. Batch adsorption experiments were carried out for the removal of fluorescein dyes using a granular activated carbon as an adsorbent. The effects of various parameters such as pH, amount of adsorbent, contact time, initial concentration and temperature of the adsoprtion system were investigated. The experimental results revealed that activated carbon exhibit high efficiencies to remove fluorescein dyes from the aqueous solution. The equilibrium process can be well described by Freundlich isotherm in the temperature range from 298 K to 318 K. From adsorption kinetic experiments, the adsorption process followed a pseudo second order kinetic model, and the adsorption rate constant ($k_2$) decreased with increasing the initial concentration of fluorescein. The free energy of adsorption ${\Delta}G^0$), enthalpy ${\Delta}H^0$), and entropy (${\Delta}S^0$) change were calculated to predict the nature adsorption. The estimated values for ${\Delta}G^0$ were -17.11~-20.50 kJ/mol over an activated carbon at 250 mg/L, indicated toward a spontaneous process. The positve value for ${\Delta}H^0$, 33.2 kJ/mol, indicates that the adsorption of fluorescein dyes on an activated carbon is an endothermic process.

The Preparation of Low Cost Activated Carbon Fibers for Removal of Volatile Organic Chemicals and Odor (저가 탄소섬유를 이용한 악취제거 기술 개발)

  • Lim, Yun-Soo;Yoo, Ki-Sang;Kim, Hee-Seok;Chung, Yun-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.928-935
    • /
    • 2001
  • In this study, two kinds of activated carbon fibers were prepared from PAN-based stabilized fibers by physical activation with steam. The variations in specific surface area, amount of iodine adsorption and pore size distribution of the activated carbon fibers after the activation process were discussed. The activated carbon fibers were prepared by two different methods, namely a 1- and 2-step method. For the 2-step method, carbonization of fibers in $N_2$ atmosphere was carried out to make carbon fibers and then activated by steam. In normal two step steam activation, BET surface area of about $1019m^2/g$ was obtained in the study. In the 1-step steam activation process, the carbonization and activation were simultaneously carried out. In the one step steam activation, BET surface area of $1635m^2/g$ was obtained after heat-treatment at $990^{\circ}C$. However, nitrogen adsorption isotherms for oxidized PAN based activated carbon fibers that were prepared by both methods were type I in the Brunauer-Deming-Deming-Teller (BDDT) classification even though they have different BET surface areas, amounts of iodine adsorption and pore size distributions.

  • PDF

Development of Bio-AC Filter for Heavy Metal Adsorption (중금속 제거에 우수한 바이오 활성탄 필터의 개발)

  • Kim, Hak-Hee;Yoon, Kyung-Sik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.541-546
    • /
    • 2003
  • Activated carbon was prepared from coffee wastes by chemical activation with $ZnCl_{2}$, NaOH and KOH. The coffee wastes was used as raw material. Preparation process involves the roasting of raw material and carbonization of roasted material followed by chemical activation. N2-BET surface areas of activated coffee char prepared by chemical activation was measured as $1,110{\sim}2,442m^{2}/g$. Removal of copper and chromium in solution by activated carbon was carried out and structural change of pore surface was observed by SEM.

  • PDF

Diffusion-Selectivity Analysis of Permanent Gases through Carbon Molecular Sieve Membranes

  • Kang, Jong-Seok;Park, Ho-Bum;Lee, Young-Moo
    • Korean Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.43-53
    • /
    • 2003
  • The selectivity of a gas in the carbon molecular sieve membrane (CMSM) can be expressed as the ratio of the product of the diffusivity and the solubility of two different gases. The diffusivity is also expressed as the product of the entropy and the total energy (kinetic and potential energy) in the nano-sized pore of the membrane. The present study calculates the entropic-energy and selectivity of penetrant gases such as H$_2$, O$_2$, N$_2$, and CO$_2$ from the gas-in-a box theory to physically analyze the diffusivity of penetrant gas in slit-shaped pore of CMSM focusing on the restriction of gas motion based on the size difference between penetrant gas pairs. The contribution of each energy term is converted to entropic term separately. By the conjugated calculation for each entropic-energy, the entropic effects on diffusivity-selectivity for gas pairs such as H$_2$/N$_2$, CO$_2$/N$_2$, and O$_2$/N$_2$ were analyzed within active pore of CMSM. In the activated diffusion domain, the calculated value of entropic-selectivity lies between 9.25 and 111.6 for H$_2$/N$_2$, between 3.36 and 6.0 for CO$_2$/N$_2$, and between 1.25 and 16.94 for O$_2$/N$_2$, respectively. The size decrement of active pore in CMSM had the direct effect on the reduction of translational entropic-energy and the contribution of vibrational entropic-energy for N$_2$, O$_2$, and H$_2$ was almost negligible. However, the vibrational entropic term of CO$_2$ might extravagantly affect on the entropic-selectivity.

A Study on Adsorption Characteristics of Benzene over Activated Carbons Coated with Insulating Materials and Desorption by Microwave Irradiation (절연물질이 코팅된 활성탄의 벤젠 흡착특성 및 마이크로파에 의한 탈착에 관한 연구)

  • Kim, Ki-Joong;Ahn, Ho-Geun
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.445-451
    • /
    • 2008
  • In order to regenerate the activated carbon polluted by volatile organic compounds (VOCs) using microwave, adsorption and desorption characteristics of benzene over activated carbon (AC) coated with insulating materials were investigated. Physical characteristics of activated carbon and insulator-coated ACs were investigated by means of $N_2$ gas adsorption and scanning electron microscopy (SEM). The amount of VOC adsorbed showed a positive relationship with the specific surface area of the ACs, and spark discharge over insulator-coated ACs did not occur. Potassium silicate (PS) was the best binder for coating of insulating materials on AC. Amount of benzene desorbed by microwave irradiation was dependent on output power of microwave. Nearly same performance was obtained even though the adsorption-desorption operation under microwave irradiation was repeated 5 times. Finally, it was known that the microwave heating was a very effective mean for regenerating the polluted AC.

Efficient removal of radioactive waste from solution by two-dimensional activated carbon/Nano hydroxyapatite composites

  • El Said, Nessem;Kassem, Amany T.
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.327-334
    • /
    • 2018
  • The nano/micro composites with highly porous surface area have attracted of great interest, particularly the synthesis of porous and thin film sheets of high performance. In this paper, an easy method of cost-effective synthesis of thin film ceramic fiber membranes based on Hydroxyapatite, and activated carbon by turned into studied to be applied within the service-facilitated the transport of radioactive waste such as $^{90}Sr$, $^{137}Cs$ and $^{60}Co$) as activated product of radioisotopes from ETRR-2 research reactor and dissolved in 3M $HNO_3$, across a thin flat-sheet supported liquid membrane (TFSSLM). Radionuclides are transported from alkaline pH values. The presence of sodium salts in the aqueous media improves in $HNO_3$, the lowering of permeability because the initial $HNO_3$ concentration is improved. The study some parameters on the thin sheet ceramic supported liquid membrane. EDTA as stripping phase concentration, time of extraction and temperature were studied. The study of maximum permeability of radioisotopes for all parameters. The pertraction of a radioactive waste solution from nitrate medium were examined at the optimized conditions. Under the optimum experimental 98.6-99.9% of $^{90}Sr$, 79.65-80.3% of $^{137}Cs$ and $^{60}Co$ 45.5-55.5% in 90-110 min with were extracted in 10-30 min, respectively. The process of diffusion in liquid membranes is governed by the chemical diffusion process.