• Title/Summary/Keyword: n-normed spaces

Search Result 32, Processing Time 0.018 seconds

STABILITY OF THE MONOMIAL FUNCTIONAL EQUATION IN QUASI NORMED SPACES

  • Mirmostafaee, Alireza Kamel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.777-785
    • /
    • 2010
  • Let X be a linear space and Y be a complete quasi p-norm space. We will show that for each function f : X $\rightarrow$ Y, which satisfies the inequality ${\parallel}{\Delta}_x^nf(y)\;-\;n!f(x){\parallel}\;{\leq}\;\varphi(x,y)$ for suitable control function $\varphi$, there is a unique monomial function M of degree n which is a good approximation for f in such a way that the continuity of $t\;{\mapsto}\;f(tx)$ and $t\;{\mapsto}\;\varphi(tx,\;ty)$ imply the continuity of $t\;{\mapsto}\;M(tx)$.

ON STABILITY PROBLEMS WITH SHADOWING PROPERTY AND ITS APPLICATION

  • Chu, Hahng-Yun;Han, Gil-Jun;Kang, Dong-Seung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.673-688
    • /
    • 2011
  • Let $n{\geq}2$ be an even integer. We investigate that if an odd mapping f : X ${\rightarrow}$ Y satisfies the following equation $2_{n-2}C_{\frac{n}{2}-1}rf\(\sum\limits^n_{j=1}{\frac{x_j}{r}}\)\;+\;{\sum\limits_{i_k{\in}\{0,1\} \atop {{\sum}^n_{k=1}\;i_k={\frac{n}{2}}}}\;rf\(\sum\limits^n_{i=1}(-1)^{i_k}{\frac{x_i}{r}}\)=2_{n-2}C_{{\frac{n}{2}}-1}\sum\limits^n_{i=1}f(x_i),$ then f : X ${\rightarrow}$ Y is additive, where $r{\in}R$. We also prove the stability in normed group by using shadowing property and the Hyers-Ulam stability of the functional equation in Banach spaces and in Banach modules over unital C-algebras. As an application, we show that every almost linear bijection h : A ${\rightarrow}$ B of unital $C^*$-algebras A and B is a $C^*$-algebra isomorphism when $h(\frac{2^s}{r^s}uy)=h(\frac{2^s}{r^s}u)h(y)$ for all unitaries u ${\in}$ A, all y ${\in}$ A, and s = 0, 1, 2,....