• Title/Summary/Keyword: n-heptane

Search Result 188, Processing Time 0.024 seconds

Simultaneous Determination of Plasticizers in Food Simulants Using GC/MS

  • Park, Na-Young;Yoon, Hae-Jung;Kwak, In-Shin;Jeon, Dae-Hoon;Choi, Hyun-Chul;Eum, Mi-Ok;Kim, Hyung-Il;Sung, Jun-Hyun;Kim, So-Hee;Lee, Young-Ja
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.15 no.3
    • /
    • pp.93-98
    • /
    • 2009
  • Migration levels of plasticizers, di-n-butyl phthalate (DBP), benzyl-butyl phthalate (BBP), di-n-octyl phthalate(DNOP), di-iso-decyl phthalate (DIDP) and di-iso-nonyl phthalate (DINP), di-(2-ethylhexyl) adipate (DEHA), from 46 poly(vinyl chloride) (PVC) wrap films and 54 PVC gaskets into food simulants were determined using gas chromatography/mass spectrometry (GC/MS). The method was validated with limit of detection (LOD) of $0.01{\sim}0.02\;{\mu}g/mL$ for DBP, BBP, DNOP and DEHA, and $2\;{\mu}g/mL$ for DIDP and DINP. The linearity were found to be > 0.99 for all the compounds in concentration range of $0.1{\sim}81.4\;{\mu}g/mL$, and overall recoveries were ranged from 90.4 ~ 99.6%. DBP, BBP, DNOP, DEHA, DIDP and DINP were not detected in food simulants, except 1 wrap sample from which 0.28 and $0.99\;{\mu}g/mL$ of DEHA were detected respectively when tested with 20% ethanol and n-heptane as food simulants. These values were below the regulatory limitation in European Union (EU).

  • PDF

Purification and Properties of Extracellular Lipases with Transesterification Activity and 1,3-Regioselectivity from Rhizomucor miehei and Rhizopus oryzae

  • Tako, Miklos;Kotogan, Alexandra;Papp, Tamas;Kadaikunnan, Shine;Alharbi, Naiyf S.;Vagvolgyi, Csaba
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.277-288
    • /
    • 2017
  • Rhizomucor miehei NRRL 5282 and Rhizopus oryzae NRRL 1526 can produce lipases with high synthetic activities in wheat bran-based solid-state culture. In this study, the purification and biochemical characterization of the lipolytic activities of these lipases are presented. SDS-PAGE indicated a molecular mass of about 55 and 35 kDa for the purified R. miehei and Rh. oryzae enzymes, respectively. p-Nitrophenyl palmitate (pNPP) hydrolysis was maximal at $40^{\circ}C$ and pH 7.0 for the R. miehei lipase, and at $30^{\circ}C$ and pH 5.2 for the Rh. oryzae enzyme. The enzymes showed almost equal affinity to pNPP, but the $V_{max}$ of the Rh. oryzae lipase was about 1.13 times higher than that determined for R. miehei using the same substrate. For both enzymes, a dramatic loss of activity was observed in the presence of 5 mM $Hg^{2+}$, $Zn^{2+}$, or $Mn^{2+}$, 10 mM N-bromosuccinimide or sodium dodecyl sulfate, and 5-10% (v/v) of hexanol or butanol. At the same time, they proved to be extraordinarily stable in the presence of n-hexane, cyclohexane, n-heptane, and isooctane. Moreover, isopentanol up to 10% (v/v) and propionic acid in 1 mM concentrations increased the pNPP hydrolyzing activity of R. miehei lipase. Both enzymes had 1,3-regioselectivity, and efficiently hydrolyzed p-nitrophenyl (pNP) esters with C8-C16 acids, exhibiting maximum activity towards pNP-caprylate (R. miehei) and pNP-dodecanoate (Rh. oryzae). The purified lipases are promising candidates for various biotechnological applications.

DNSs of the Ignition of a Lean PRF/Air Mixture under RCCI/SCCI Conditions: A Comparative Study (RCCI/SCCI 조건하에서 희박 PRF/공기 혼합물의 점화에 관한 직접수치모사를 이용한 비교 연구)

  • Luong, Minh Bau;Yu, Kwang Hyeon;Yoo, Chun Sang
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.179-182
    • /
    • 2014
  • A comparative DNS study of the ignition characteristics of dual-fueled reactivity controlled compression ignition (RCCI) and stratification charge compression ignition (SCCI) is investigated using a 116-species reduced primary reference fuel (PRF) mechanism. In the RCCI combustion, two PRF fuels (n-heptane and iso-octane) with opposite autoignition characteristics are separatedly supplied and in-cylinder blended such that spatial variations in fuel reactivity, fuel concentration and temperature are achieved. In the SCCI combustion, however, just a single fuel (PRF50) is used such that only fuel concentration and temperature inhomoginieties are obtained. Because three factors, rather than only two as in SCCI combustion, govern the overall RCCI combustion, combustion timing and combustion duration or heat release rate of RCCI combustion are flexibly and effectively controlled. It is found that the overall RCCI combustion occurs much earlier and its combustion duration is longer compared to SCC combustionI. Moreover, the negative temperature coefficient (NTC) has a positive effect on enhancing RCCI combustion by inducing a shorter combustion timing and a longer combustion duration as a result of the occurrence of a predominant low-speed deflagration-combustion mode.

  • PDF

Separation Characteristics of Lactic Acid by Using Mixed Tertiary Amine Extractants (혼합아민 추출제를 이용한 젖산의 분리특성)

  • Hong, Yeon-Gi;Hong, Won-Hui;Hong, Tae-Hui
    • KSBB Journal
    • /
    • v.14 no.5
    • /
    • pp.566-571
    • /
    • 1999
  • Lactic acid is of interested as the raw material of biodegradable polymer. In this study lactic acid was separated by reactive extraction with mixed tertiary amine extractant dissolved in 1-octanol/n-heptane. Mixed tertiary amine extractant was composed of tripropylamine(TPA) and trioctylamine(TOA). The concentration range of lactic acid is ca. 5wt% which is the concentration of lactic acid obtained from fermentation.Maximum distribution coeficient was obtained at 8:2 weight ratio of TPA/TOA and their extraction efficiencies were above 90%.

  • PDF

Extinguishment of Liquid Fuel Fire by Water Mist Containing Additives

  • Park, Jae-Man;Won, Jung-Il;Shin, Chang-Sub
    • International Journal of Safety
    • /
    • v.4 no.2
    • /
    • pp.24-29
    • /
    • 2005
  • An experimental study was presented for extinguishing characteristics of liquid fuel fire by water mist($Dv_{0.99}{\leq}200{\mu}m$) containing potassium acetate and sodium acetate trihydrate. To evaluate the extinguishing performance of water mist containing additives, the evaporation characteristics of a water droplet on a heated surface was examined. The evaporation process was recorded by a charge-coupled-device camera. Also, small-scale extinguishing tests were conducted for n-heptane pool fire in ventilated space. During the experiments, flame temperatures were measured, and concentrations of oxygen and carbon monoxide were analyzed by a combustion gas analyzer. The average evaporation rate of water droplet containing additives was lower than that of pure water at a given surface temperature and decreased with the concentration increase due to the precipitation of salt in the liquid-film and change of surface tension. In case of using additives, the fire extinguishing times was shorter than that of pure water at a given discharge pressure and it was because the momentum of a water droplet containing additives was increased. And also dissociated metal atoms, potassium or sodium, were reacted as a scavenger of the major radical species OH, H which were generated for combustion process. Moreover, at a high pressure of 4 MPa, the fire was extinguished through blowing effect as well as primary extinguishing mechanisms.

A Study on Composition of Thinners Used in Korea (우리나라에서 사용되는 일부 신나의 구성성분에 관한 연구)

  • Paik, Nam Won;Yoon, Chung Sik;Zoh, Kyuog Ehi;Jeong, Hoi Myung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.1
    • /
    • pp.105-114
    • /
    • 1998
  • In this study, 108 thinners were analyzed to identify their composition. The purposes of this study were to provide the data for MSDS and worker exposure levels. Thinners were collected from manufacturing industries, distributors and users. Wide ranges of thinner components were found ; Toluene, xylene, and ethyl benzene were most often found. Next, MIBK, cellosolve acetate, butyl cellosolve, and butyl acetate were found in 20-40 thinners. Others, such as acetone, n-hexane, cyclohexane, heptane, methylcyciohexane, octane and nonane were also found. There were about 5-6 components in each thinner. In the view point of Industrial Hygiene, Benzene was the most important component of thinners, which procures leukemia. Benzene was found from 8 kinds of thinners out of the total 108 surveyed. Thus, Content of benzene in thinners must be evaluated when industrial hygiene surveys are performed. Aromatic hydrocarbons were identified from 71 kinds of thinners out of total 108 and their contents were 10-87%. Alkanes were not contained in automobile painting, spraying, degreasing, urethane and epoxy thinners but lacquer, enamel and coating thinners.

  • PDF

Experimental Study on the Designed Ventilation Effect on the Smoke Movement at Rescue Station fire in Railway Tunnel (터널 내 화재발생시 구난역 내의 연기 거동에 미치는 설계된 환기 영향에 대한 실험적 연구)

  • Kim, Dong-Woon;Lee, Seong-Hyeok;Ryou, Hong-Sun;Yoon, Sung-Wook
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.163-167
    • /
    • 2008
  • In this study, the 1/35 reduced-scale model experiment were conducted to investigate designed ventilation effect on the smoke movement at rescue station fire in railway tunnel. A model tunnel with 2 mm thick, 10 m long, 0.19 m high and 0.26 m was made by using Froude number scaling law. The cross-passages installing escape door at the center were connected between incident tunnel and rescue tunnel. The n-heptane pool fires with heat release rate 698.97W were used as fire source. The fire source was located at the center and portal of incident tunnel as worst case. A operating ventilation system extracted smoke amount of 0.015 cms(cubic meters per second). The smoke temperature and CO gas concentration in cross-passage were measured to verify designed ventilation system. The result showed that, at center fire case without ventilation, smoke did not propagate to rescues station. In portal fire case, smoke spreaded to rescues station without ventilation. But smoke did not propagated to rescues station with designed ventilation.

  • PDF

Combustion and Microexplosion of Al/Liquid Fuel Slurry Droplets(I)-Ewperimental Study- (Al/액체연료 슬러리 액적의 연소와 (1)-실험적 연구-)

  • Byeon, Do-Yeong;Jo, Ju-Hyeong;An, Guk-Yeong;Baek, Seung-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1576-1585
    • /
    • 1997
  • The microexplosive combustion of a slurry droplet was investigated experimentally. The microexplosion has been approximately considered to be caused by pressure build-up in the shell and to be promoted by heterogeneous nucleation of liquid carrier, which is due to the suppression of evaporation and subsequent superheating of liquid carrier. To closely investigate the pressure build-up and the heterogeneous nucleation, the experiments were conducted in an electric combustor, of which temperature was controllable (400 K-900 K). And the effects of two aligned droplets on the interactive combustion and microexplosion were found in a hot post region of a flat flame burner. Transient internal temperature distributions for slurry droplets were measured. And the shell formation and the microexplosion of suspended A1/JP-8 and Al/n-heptane slurry droplets were examined with various surfactant concentrations (0.5-5 wt%) and solid loadings (10-50 wt.%). The microexplosion time of binary array of droplets was found to be less than that of the isolated droplet due to radiative interaction between droplets.

Vaporization of Hydrocarbon Fuel Droplet in High Pressure Environments (고압 환경하에서 탄화수소 연료 액적의 기화특성 연구)

  • Kim, Sung-Yup;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.127-132
    • /
    • 2003
  • A study of high-pressure n-heptane droplet vaporization is conducted with emphasis placed on equilibrium at vapor-liquid interface. General frame of previous rigorous model[1] is retained but tailored for flash equilibrium calculation of vapor-liquid interfacial thermodynamics. The model is based on complete time-dependent conservation equations with a full account of variable properties and vapor-liquid interfacial thermodynamics. The influences of high-pressure phenomena, including ambient gas solubility, thermodynamic non-ideality, and property variation on the droplet evaporation are investigated. The governing equations and associated moving interfacial boundary conditions are solved numerically using a implicit scheme with the preconditioning method and the dual time integration technique. And a parametric study of entire droplet vaporization history as a function of ambient pressure, temperature has been conducted. Some computational results are compared with Sato's experimental data for the validation of calculations. For low ambient temperatures, the droplet lifetime first increases with pressures, then decreases for high pressures. For higher ambient temperatures, the droplet lifetime increase with less amplitude than that of low ambient temperatures, which then decreases with more amplitude than that of low temperatures. The solubility of nitrogen can not be neglected in the high pressure and it becomes higher as the pressure goes up.

  • PDF

Study on the Injection Characteristics using Injection Rate in a Direct-injection Gasoline Injector with Multi-hole (분사율을 이용한 직접 분사식 다공 가솔린 인젝터의 분사특성 연구)

  • Park, Jeonghyun;Shin, Dalho;Park, Su Han
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.20-28
    • /
    • 2016
  • This paper presents an experimental study on the GDI injector with Bosch method. The injection characteristics, such as the injection quantity, the injection rate, the maximum velocity of the nozzle exit and the injection delay were studied through the change of the injection pressure, the tube pressure and energizing duration in injection rate measurement device using nheptane. The injection quantity is increased by increasing injection pressure, decreasing tube pressure or increasing energizing duration. As the difference of the injection quantity changed, the shape of injection rate was moved with a constant form. The maximum velocity of the nozzle exit showed a tendency to increase as the injection pressure is increased. However, tube pressure did not affect. Overall, it was confirmed that the closing delay is longer than the opening delay in all conditions. As the injection pressure increased, the result has a tendency to decrease the closing delay, it did not affect the opening delay. Reduction of the closing delay showed the reduction of the injection duration. the tube pressure and energizing duration did not affect the injection delay (opening delay, closing delay).