• Title/Summary/Keyword: n-ZnO

Search Result 917, Processing Time 0.031 seconds

X-Ray Absorption Spectroscopic Study of 120 MeV $Ag^{9+}$ Ion-Irradiated N-Doped ZnO Thin Films

  • Gautam, Sanjeev;Lim, Weon Cheol;Kang, Hee Kyung;Lee, Ki Soo;Song, Jaebong;Song, Jonghan;Asokan, K.;Chae, Keun Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.315-315
    • /
    • 2013
  • We report the electronic structure modification in the swift heavy ion (SHI) irradiated N-doped ZnO thin films prepared by RF sputtering from ZnO target in different ratio of Ar/$N_2$ gas mixture using highly pure $N_2$ gas. The different N-ZnO thin lms were then irradiated with 120 MeV Ag ion beam with different doses ranging from $1{\times}10^{11}$ to $5{\times}10^{12}$ ions/$cm^2$ and characterized by XRD and near edge X-ray absorption ne structure (NEXAFS) at N and O K-edges. The NEXAFS measurements provide direct evidence of O 2p and Zn 3d orbital hybridization and also the bonding of N ions with Zn and O ions. The minimum value of resistivity of $790{\Omega}cm$, a Hall mobility of $22cm^2V^-1s^-1$ and the carrier concentration of $3.6{\times}10^{14}cm^{-3}$ were yielded at 75% $N_2$. X-ray diffraction (XRD) measurements revealed that N-doped ZnO films had the preferential orientation of (002) plane for all samples, while crystallinity start decreasing at 32.5% $N_2$. The average crystallite size varies from 5.7 to 8.2 nm for 75% and then decreases to 7.8 nm for 80% $Ar:N_2$ ratio.

  • PDF

Luminescent Properties of Er-Doped ZnO Phosphors (희토류계 Erbium을 도핑한 ZnO 형광체의 발광특성)

  • Song, Hyun-Don;Kim, Young-Jin
    • Korean Journal of Materials Research
    • /
    • v.16 no.1
    • /
    • pp.58-62
    • /
    • 2006
  • Effects of doping concentration and annealing atmosphere on the luminescent properties of $Er^{3+}$ doped ZnO phosphor powders were investigated. Photoluminescence (PL) spectra of ZnO:Er exhibit an orange emission band at around 575 nm, while those of pure ZnO show a green emission at 520 nm. Emission difference between ZnO:Er and pure ZnO is attributed to the energy transfer of Er ions in ZnO. The highest PL intensity is obtained by doping 1 mol% Er to ZnO. Luminescent properties of ZnO:Er phosphors annealed at $N_2$+vacuum atmosphere are superior to those annealed at $N_2$ atmosphere.

Transparent Phosphorus Doped ZnO Ohmic Contact to GaN Based LED

  • Lim, Jae-Hong;Park, Seong-Ju
    • Korean Journal of Materials Research
    • /
    • v.19 no.8
    • /
    • pp.417-420
    • /
    • 2009
  • This study develops a highly transparent ohmic contact using phosphorus doped ZnO with current spreading for p-GaN to increase the optical output power of nitride-based light-emitting diodes (LEDs). The phosphorus doped ZnO transparent ohmic contact layer was prepared by radio frequency magnetron sputtering with post-deposition annealing. The transmittance of the phosphorus doped ZnO exceeds 90% in the region of 440 nm to 500 nm. The specific contact resistance of the phosphorus doped ZnO on p-GaN was determined to be $7.82{\times}10^{-3}{\Omega}{\cdot}cm^2$ after annealing at $700^{\circ}C$. GaN LED chips with dimensions of $300\times300{\mu}m$ fabricated with the phosphorus doped ZnO transparent ohmic contact were developed and produced a 2.7 V increase in forward voltage under a nominal forward current of 20 mA compared to GaN LED with Ni/Au Ohmic contact. However, the output power increased by 25% at the injection current of 20 mA compared to GaN LED with the Ni/Au contact scheme.

전기화학증착법으로 성장된 n-ZnO 나노구조/p-Si 기판의 특성연구

  • Kim, Myeong-Seop;Lee, Hui-Gwan;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.102-102
    • /
    • 2011
  • ZnO는 우수한 전기적, 광학적 특성으로 LED, solar cell 등과 같은 광전자소자의 응용을 목적으로 많은 연구가 진행되고 있다. 최근에는 ZnO 동종접합을 만들고자 많은 연구가 진행되고 있으나 p형 ZnO의 낮은 용해성과 높은 불순물에 따른 제조의 어려움으로 현재까지는 n형 ZnO만이 전도성 기판 위에 성장되어 응용되고 있다. 전도성 기판으로서 Si의 경우 낮은 가격, 공정의 용이함 등으로 GaN, SiC 등의 기판에 비하여 많은 응용이 가능하다. 따라서 본 연구에서는 전기화학증착법을 이용하여 p-n 접합을 형성하기 위하여 p형 Si 기판 위에 n형 ZnO 나노구조를 성장하고 그 특성을 분석하였다. 전기화학증착법은 낮은 온도 및 간단한 공정과정으로 빠른 성장 속도를 가지고 나노구조를 효과적으로 성장할 수 있는 방식이다. Seed 층 및 열처리에 따른 n형 ZnO 나노구조의 성장 특성 분석을 위하여 radio frequency (RF) magnetron 스퍼터를 사용하여 ZnO 및 Al doped ZnO (AZO) seed 층을 p형 Si 기판 위에 증착 후 다양한 온도로 열처리를 수행하였다. 질산아연(zinc nitrate)과 HMT가 희석된 용액에 KCl 촉매를 일정량 첨가한 후 다양한 공정 온도, 공정시간 및 질산아연의 몰농도를 변화시켜 n형 ZnO 나노구조를 성장하였다. 성장된 나노구조의 특성은 field emission scanning microscopy (FE-SEM), energy dispersive X-ray (EDX), photoluminescence (PL) 등의 장비를 사용하여 구조적, 광학적 특성을 분석하였다.

  • PDF

Atomic Layer Deposition of Nitrogen Doped ZnO and Application for Highly Sensitive Coreshell Nanowire Photo Detector

  • Jeong, Han-Eol;Gang, Hye-Min;Cheon, Tae-Hun;Kim, Su-Hyeon;Kim, Do-Yeong;Kim, Hyeong-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.26.1-26.1
    • /
    • 2011
  • We investigated the atomic layer deposition (ALD) process for nitrogen doped ZnO and the application for n-ZnO : N/p-Si (NW) coaxial hetero-junction photodetectors. ALD ZnO:N was deposited using diethylzinc (DEZ) and diluted $NH_4OH$ at $150^{\circ}C$ of substrate temperature. About 100~300 nm diameter and 5 um length of Si nanowires array were prepared using electroless etching technique in 0.108 g of $AgNO_3$ melted 20 ml HF liquid at $75^{\circ}C$. TEM images showed ZnO were deposited on densely packed SiNW structure achieving extraordinary conformality. When UV (360 nm) light was illuminated on n-ZnO:N/p-SiNW, I-V curve showed about three times larger photocurrent generation than film structure at 10 V reverse bias. Especially, at 660 nm wave length, the coaxial structure has 90.8% of external quantum efficiency (EQE) and 0.573 A/W of responsivity.

  • PDF

Growth of vertically aligned Zinc Oxide rod array on patterned Gallium Nitride epitaxial layer (패턴된 GaN 에피층 위에 ZnO 막대의 수직성장)

  • Choi, Seung-Kyu;Yi, Sung-Hak;Jang, Jae-Min;Kim, Jung-A;Jung, Woo-Gwang
    • Korean Journal of Materials Research
    • /
    • v.17 no.5
    • /
    • pp.273-277
    • /
    • 2007
  • Vertically aligned Zinc Oxide rod arrays were grown by the self-assembly hydrothermal process on the GaN epitaxial layer which has a same lattice structure with ZnO. Zinc nitrate and DETA solutions are used in the hydrothermal process. The $(HfO_2)$ thin film was deposited on GaN and the patterning was made by the photolithography technique. The selective growth of ZnO rod was achieved with the patterned GaN substrate. The fabricated ZnO rods are single crystal, and have grown along hexagonal c-axis direction of (002) which is the same growth orientation of GaN epitaxial layer. The density and the size of ZnO rod can be controlled by the pattern. The optical property of ordered array of vertical ZnO rods will be discussed in the present work.

Photodesorption of $O_2^-$ on Suspended Zine Oxide (현탁된 산화 아연에서의 $O_2^-$의 광탈착)

  • Dong-Chul Chon;Chong-Soo Han;Gae-Soo Lee;Hakze Chon
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.47-50
    • /
    • 1986
  • Photodesorption of adsorbed $O_2^-$ on ZnO was investigated in ZnO-$O_2(N_2)$-rubrene-bromobenzene mixture. When the mixture was illuminated with the light having the energy greater than the band gap energy of ZnO (3.2eV), the amount of reacted rubrene increased as the amount of ZnO increased in the experimental condition. For the energy of light less than 3.2eV, however, the reacted amount of rubrene decreased as the amount of ZnO increased. There is a difference in the reacted amount of rubrene between ZnO-$O_2$-rubrene-bromobenzene and ZnO-$N_2$-rubrene-bromobenzene mixtures. From the results, it was suggested that the adsorbed $O_2^-$ on ZnO transform to singlet oxygen in the photodesorption process and the singlet oxygen reacted with rubrene.

  • PDF

Comparison of teratogenecity induced by nano- and micro-sized particles of zinc oxide in cultured mouse embryos

  • Jung, A Young;Jung, Ki Youn;Lin, Chunmei;Yon, Jung-Min;Lee, Jong Geol;Lee, Beom Jun;Yun, Young Won;Nam, Sang-Yoon
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.2
    • /
    • pp.133-139
    • /
    • 2015
  • The increasing uses of zinc oxide nanoparticles (nZnO) in industrial and personal care products raise possible danger of using nZnO in human. To determine whether ZnO induces size-dependent anomalies during embryonic organogenesis, mouse embryos on embryonic day 8.5 were cultured for 2 days under 50, 100, and $150{\mu}g$ of nZnO (< 100 nm) or micro-sized ZnO (mZnO; $80{\pm}25{\mu}m$), after which the morphological changes, cumulative quantity of Zn particles, and expressions of antioxidant and apoptotic genes were investigated. Although embryos exposed to $50{\mu}g$ of ZnO exhibited no defects on organogenesis, embryos exposed to over $100{\mu}g$ of ZnO showed increasing anomalies. Embryos treated with $150{\mu}g$ of nZnO revealed significant changes in Zn absorption level and morphological parameters including yolk sac diameter, head length, flexion, hindbrain, forebrain, branchial bars, maxillary process, mandibular process, forelimb, and total score compared to the same dose of mZnO-treated embryos. Furthermore, CuZn-superoxide dismutase, cytoplasmic glutathione peroxidase (GPx) and phospholipid hydroperoxidase GPx mRNA levels were significantly decreased, but caspase-3 mRNA level was greatly increased in nZnO-treated embryos as compared to normal control embryos. These findings indicate that nZnO has severer teratogenic effects than mZnO in developing embryos.

PL Property of Al-N Codoped p-type ZnO Thin Films Fabricated by DC Magnetron Sputtering

  • Liu, Yan-Yan;Jin, Hu-Jie;Park, Choon-Bae;Hoang, Geun-C.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.89-92
    • /
    • 2009
  • High-quality Al-N doped p-type ZnO thin films were deposited on Si and buffer layer/Si by DC magnetron sputtering in a mixture of $N_2$ and $O_2$ gas. The target was ceramic ZnO mixed with $Al_2O_3$ (2 wt%). The p-type ZnO thin films showed a carrier concentration in the range of $1.5{\times}10^{15}{\sim}2.93{\times}10^{17}\;cm^{-3}$, resistivity in the range of 131.2${\sim}$2.864 ${\Omega}cm$, mobility in the range of 3.99${\sim}$31.6 $cm^2V^{-1}s^{-l}$, respectively. It was easier to dope p-type ZnO films on Si substrates than on buffer layer/Si. The film grown on Si showed the highest quality of photoluminescence (PL) characteristics. The Al donor energy level depth $(E_d)$ of Al-N codoped ZnO films was reduced to about 50 meV, and the N acceptor energy level depth $(E_a)$ was reduced to 63 meV.

Work function variation of doped ZnO nanorods by Kelvin probe force microscopy

  • Ben, Chu Van;Hong, Min-Chi;Yang, Woo-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.446-446
    • /
    • 2011
  • One dimensional (1-D) structures of ZnO nanorods are promising elements for future optoelectronic devices. However there are still many obstacles in fabricating high-quality p-type ZnO up to now. In addition, it is limited to measure the degree of the doping concentration and carrier transport of the doped 1-D ZnO with conventional methods such as Hall measurement. Here we demonstrate the measurement of the electronic properties of p- and n-doped ZnO nanorods by the Kelvin probe force microscopy (KPFM). Vertically aligned ZnO nanorods with intrinsic n-doped, As-doped p-type, and p-n junction were grown by vapor phase epitaxy (VPE). Individual nanowires were then transferred onto Au films deposited on Si substrates. The morphology and surface potentials were measured simultaneously by the KPFM. The work function of the individual nanorods was estimated by comparing with that of gold film as a reference, and the doping concentration of each ZnO nanorods was deduced. Our KPFM results show that the average work function difference between the p-type and n-type regions of p-n junction ZnO nanorod is about ~85meV. This value is in good agreement with the difference in the work function between As-doped p- and n-type ZnO nanorods (96meV) measured with the same conditions. This value is smaller than the expected values estimated from the energy band diagram. However it is explained in terms of surface state and surface band bending.

  • PDF