• 제목/요약/키워드: n-Gram Indexing

검색결과 14건 처리시간 0.022초

한글 문서 검색에서 n-Gram 색인방법의 성능 분석 (Performance Analysis of n-Gram Indexing Methods for Korean text Retrieval)

  • 이준규;심수정;박혁로
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 컴퓨터소사이어티 추계학술대회논문집
    • /
    • pp.145-148
    • /
    • 2003
  • The agglutinative nature of Korean language makes the problem of automatic indexing of Korean much different from that of Indo-Eroupean languages. Especially, indexing with compound nouns in Korean is very problematic because of the exponential number of possible analysis and the existence of unknown words. To deal with this compound noun indexing problem, we propose a new indexing methods which combines the merits of the morpheme-based indexing methods and the n-gram based indexing methods. Through the experiments, we also find that the best performance of n-gram indexing methods can be achieved with 1.75-gram which is never considered in the previous researches.

  • PDF

Protein Sequence Search based on N-gram Indexing

  • Hwang, Mi-Nyeong;Kim, Jin-Suk
    • Bioinformatics and Biosystems
    • /
    • 제1권1호
    • /
    • pp.46-50
    • /
    • 2006
  • According to the advancement of experimental techniques in molecular biology, genomic and protein sequence databases are increasing in size exponentially, and mean sequence lengths are also increasing. Because the sizes of these databases become larger, it is difficult to search similar sequences in biological databases with significant homologies to a query sequence. In this paper, we present the N-gram indexing method to retrieve similar sequences fast, precisely and comparably. This method regards a protein sequence as a text written in language of 20 amino acid codes, adapts N-gram tokens of fixed-length as its indexing scheme for sequence strings. After such tokens are indexed for all the sequences in the database, sequences can be searched with information retrieval algorithms. Using this new method, we have developed a protein sequence search system named as ProSeS (PROtein Sequence Search). ProSeS is a protein sequence analysis system which provides overall analysis results such as similar sequences with significant homologies, predicted subcellular locations of the query sequence, and major keywords extracted from annotations of similar sequences. We show experimentally that the N-gram indexing approach saves the retrieval time significantly, and that it is as accurate as current popular search tool BLAST.

  • PDF

음소인식 오류에 강인한 N-gram 기반 음성 문서 검색 (N-gram Based Robust Spoken Document Retrievals for Phoneme Recognition Errors)

  • 이수장;박경미;오영환
    • 대한음성학회지:말소리
    • /
    • 제67호
    • /
    • pp.149-166
    • /
    • 2008
  • In spoken document retrievals (SDR), subword (typically phonemes) indexing term is used to avoid the out-of-vocabulary (OOV) problem. It makes the indexing and retrieval process independent from any vocabulary. It also requires a small corpus to train the acoustic model. However, subword indexing term approach has a major drawback. It shows higher word error rates than the large vocabulary continuous speech recognition (LVCSR) system. In this paper, we propose an probabilistic slot detection and n-gram based string matching method for phone based spoken document retrievals to overcome high error rates of phone recognizer. Experimental results have shown 9.25% relative improvement in the mean average precision (mAP) with 1.7 times speed up in comparison with the baseline system.

  • PDF

한글 문서의 효과적인 검색을 위한 n-gram 기반의 색인 방법 (An n-gram-based Indexing Method for Effective Retrieval of Hangul Texts)

  • 이준호;안정수;박현주;김명호
    • 정보관리학회지
    • /
    • 제13권1호
    • /
    • pp.47-63
    • /
    • 1996
  • 기존의 한글 자동 색인 방법들은 어절 단위 색인법과 형태소 단위 색인법으로 분류될 수 있다. 전자는 문서내의 어절에서 비색인 분절을 절단함으로써 색인어를 추출하는 방법으로, 문서들이 많은 복합 명사들을 포함할 경우 검색 효과가 저하된다. 후자는 형태소 해석이나 구문 해석을 이용하여 중요한 의미를 갖는 명사나 명사구를 추출하는 방법으로 단일 명사를 추출함으로써 복합 명사의 띄어쓰기 문제를 극복할 수 있다. 그러나 색인 과정에서 요구되는 많은 언어 정보를 개발하고 유지 보수해야 하는 부담을 지니고 있다. 본 논문에서는 기존의 색인 방법들의 문제점들을 완화할 수 있는 새로운 색인 방법을 제안한다. 그리고 실험을 통하여 제안하는 방법의 성능을 평가한다.

  • PDF

영상검색엔진을 위한 가중치 N-Gram색인 방법 (Weighted N-Gram Indexing for Image Search Engine)

  • 이상열;정성호;황병곤
    • 한국정보기술응용학회:학술대회논문집
    • /
    • 한국정보기술응용학회 2002년도 추계공동학술대회 정보환경 변화에 따른 신정보기술 패러다임
    • /
    • pp.412-416
    • /
    • 2002
  • 멀티미디어 검색 시스템들은 아직까지 내용 기발에 의한 검색기술이 실용적으로 쓰일 만큼 높은 성능을 보이고 있지 않기 때문에 텍스트에 의한 검색만을 지원하고 있는 실정이다. HTML 문서에 나타나는 텍스트 중 이미지 아래에 붙은 표제나 이미지 링크에 붙어 있는 텍스트를 골라내어 이미지의 색인 정보로 이용하여 텍스트를 추출하는 기법을 제안하였다. 텍스트를 추출하기 위해 N-Gram 색인 방법을 사용하였으며 한편 검색 효율을 높이기 위해서 질의 의도가 큰 단어에 가중치를 부여하였다.

  • PDF

영상검색엔진을 위한 가중치 N-Gram색인 방법 (Weighted N-Gram Indexing for Image Search Engine)

  • 이상열;정성호;황병곤
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2002년도 추계공동학술대회
    • /
    • pp.412-416
    • /
    • 2002
  • 멀티미디어 검색 시스템들은 아직까지 내용 기반에 의한 검색기술이 실용적으로 쓰일 만큼 높은 성능을 보이고 있지 않기 때문에 텍스트에 의한 검색만을 지원하고 있는 실정이다. HTML 문서에 나타나는 텍스트 중 이미지 아래에 붙은 표제나 이미지 링크에 붙어 있는 텍스트를 골라내어 이미지의 색인 정보로 이용하여 텍스트를 추출하는 기법을 제안하였다. 텍스트를 추출하기 위해 N-Gram 색인 방법을 사용하였으며 한편 검색 효율을 높이기 위해서 질의 의도가 큰 단어에 가중치를 부여하였다.

  • PDF

n-Gram 색인화와 Support Vector Machine을 사용한 스팸메일 필터링에 대한 연구 (A study on the Filtering of Spam E-mail using n-Gram indexing and Support Vector Machine)

  • 서정우;손태식;서정택;문종섭
    • 정보보호학회논문지
    • /
    • 제14권2호
    • /
    • pp.23-33
    • /
    • 2004
  • 인터넷 환경의 급속한 발전으로 인하여 이메일을 통한 메시지 교환은 급속히 증가하고 있다. 그러나 이메일의 편리성에도 불구하고 개인이나 기업에서는 스팸메일로 인한 시간과 비용의 낭비가 크게 증가하고 있다. 이러한 스팸메일에 대한 문제들을 해결하기 위하여 많은 방법들이 연구되고 있으며, 대표적인 방법으로 키워드를 이용한 패턴매칭이나 나이의 베이지안 방식과 같은 확률을 이용한 방법들이 있다. 본 논문에서는 기존의 연구에 대한 문제점을 보완하기 위하여 패턴 분류문제에 있어서 우수한 성능을 보이는 Support Vector Machine을 사용하여 정상적인 메일과 스팸메일을 분류하는 방안을 제시하였으며, 특히 n-Gram을 사용하여 생성된 색인어와 단어사전을 학습데이터 생성에 사용함으로서 효율적인 학습을 수행하도록 하였다. 결론에서는 제안된 방법에 대한 성능을 검증하기 위하여 기존의 연구 결과와 비교함으로서 제안된 방법의 성능을 검증하였다.

내용기반 음악검색 시스템의 비교 분석 (A Comparative Analysis of Content-based Music Retrieval Systems)

  • 노정순
    • 정보관리학회지
    • /
    • 제30권3호
    • /
    • pp.23-48
    • /
    • 2013
  • 본 연구는 웹에서 접근 가능한 내용기반 음악검색(CBMR) 시스템들을 조사하여, 탐색질의의 종류, 접근점, 입출력, 탐색기능, 데이터베이스 성격과 크기 등의 관점에서 특성을 비교 분석하고자 하였다. 비교 분석에 사용된 특성을 추출하기 위해 내용기반 음악정보의 특성과 시스템 구축에 필요한 파일의 변환, 멜로디 추출 및 분할, 색인자질 추출과 색인, 매칭에 사용되는 기술들을 선행연구로 리뷰하였다. 15개의 시스템을 분석한 결과 다음과 같은 특성과 문제점이 분석되었다. 첫째, 도치색인, N-gram 색인, 불리언 탐색, 용어절단검색, 키워드 및 어구 탐색, 음길이 정규화, 필터링, 브라우징, 편집거리, 정렬과 같은 텍스트 정보 검색 기법이 CBMR에서도 검색성능을 향상시키는 도구로 사용되고 있었다. 둘째, 시스템들은 웹에서 크롤링하거나 탐색질의를 DB에 추가하는 등으로 DB의 성장과 실용성을 위한 노력을 하고 있었다. 셋째, 개선되어야 할 문제점으로 선율이나 주선율을 추출하는데 부정확성, 색인자질을 추출할 때 사용되는 불용음(stop notes)을 탐색질의에서도 자동 제거할 필요성, 옥타브를 무시한 solfege 검색의 문제점 등이 분석되었다.

허밍 질의 처리 시스템의 성능 향상을 위한 효율적인 빈번 멜로디 인덱싱 방법 (An Efficient Frequent Melody Indexing Method to Improve Performance of Query-By-Humming System)

  • 유진희;박상현
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제34권4호
    • /
    • pp.283-303
    • /
    • 2007
  • 최근 방대한 양의 음악데이타를 효율적으로 저장하고 검색하기 위한 방법의 필요성이 증대되고 있다. 현재 음악 데이타 검색에서 가장 일반적으로 쓰이는 방법은 텍스트 기반의 검색 방법이다. 그러나 이러한 방법은 사용자가 키워드를 기억하지 못할 경우 검색이 어려울 뿐만 아니라 키워드와 정확하게 일치하는 정보만 검색해 주기 때문에 유사한 내용을 가진 정보를 검색하기에 부적절하다. 이러한 문제점을 해결하기 위해 본 논문에서는 내용 기반 인덱싱 방법(Content-Based Indexing Method)을 사용하여 사용자가 부정확한 멜로디(Humming)로 질의하였을 경우라도 원하는 음악을 효율적으로 찾아주는 허밍 질의처리 시스템(Query-By-Humming System)을 설계한다. 이를 위해 방대한 음악 데이타베이스에서 한 음악을 대표하는 의미 있는 멜로디를 추출하여 인덱싱하는 방법을 제안한다. 본 논문에서는 이러한 의미 있는 멜로디를 사용자가 자주 질의할 가능성이 높은 멜로디로서 하나의 음악에서 여러 번 나타나는 반면 멜로디와 긴 쉼표 후에 시작되는 쉼표 단위 멜로디로 정의한다. 실험을 통해 사용자들이 이들 멜로디를 자주 질의한다는 가정을 증명하였다. 본 논문은 성능 향상을 위한 3가지 방법을 제안한다. 첫 번째는 검색속도를 높이기 위해 인덱스에 저장할 멜로디를 문자열 형태로 변환한다. 이때 사용되는 문자 변환 방법은 허밍에 포함된 에러를 허용한 방법으로써 검색 결과의 정확도를 높일 수 있다. 두 번째는 사용자가 자주 질의할 가능성이 높은 의미 있는 멜로디를 인덱싱 하여 검색 속도를 높이고자 한다. 이를 위해 신뢰도가 높은 의미 있는 멜로디를 생성하는 빈번 멜로디 추출 알고리즘과 쉼표 단위 멜로디 추출 방법을 제안한다. 세 번째로는 정확도를 향상시키기 위한 3단계 검색 방법을 제안한다. 이는 데이타베이스 접근을 최소화하여 정확한 검색 결과를 얻기 위하여 제안되었다. 또한 기존 허밍 질의 처리 시스템의 대표적인 인덱싱 방법으로 제안되었던 N-gram 방법과의 성능 비교를 통해 본 논문이 제안하는 방법의 성능이 보다 더 향상되었음을 검증하였다.

비정상 문자 조합으로 구성된 스팸 메일의 탐지 방법 (An Approach to Detect Spam E-mail with Abnormal Character Composition)

  • 이호섭;조재익;정만현;문종섭
    • 정보보호학회논문지
    • /
    • 제18권6A호
    • /
    • pp.129-137
    • /
    • 2008
  • 인터넷의 활용도가 높아짐에 따라, 스팸메일이 전체 메일에서 차지하는 비중이 점점 커지게 되었다. 전체 인터넷 자원에서 필요에 의해 사용되는 메일의 기능보다, 주로 광고나 악성코드 등의 전파를 위한 목적으로 사용되는 메일의 비중이 점점 커지고 있으며, 이를 방지하기 위한 컴퓨터 및 네트워크, 인적자원의 소모가 매우 심각해지고 있다. 이를 해결하기 위해 스팸 메일 필터링에 대한 연구가 활발히 진행되어 왔으며, 현재는 문맥상의 의미는 없지만 가독상에서 의미를 해석할 수 있는 문장에 대한 연구가 활발히 이루어지고 있다. 이러한 방식의 메일은 기존의 어휘를 분석하거나 문서 분류 기법 등을 이용한 스팸 메일을 필터링 방법을 통해 분류하기 어렵다. 본 연구는 이와 같은 어려움을 해결하기 위해 메일의 제목에 대한 N-GRAM 색인화를 통해 베이지안 및 SVM 을 이용하여 스팸 메일을 필터링 하는 방법을 제안한다.