• 제목/요약/키워드: myosin

검색결과 323건 처리시간 0.022초

Flavone Attenuates Vascular Contractions by Inhibiting RhoA/Rho Kinase Pathway

  • Baek, In-Ji;Jeon, Su-Bun;Song, Min-Ji;Yang, Enyue;Sohn, Uy-Dong;Kim, In-Kyeom
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권3호
    • /
    • pp.201-207
    • /
    • 2009
  • Our previous study demonstrated that flavone inhibits vascular contractions by decreasing the phosphorylation levelof the myosin phosphatase target subunit (MYPT1). In the present study, we hypothesized that flavone attenuates vascular contractions through the inhibition of the RhoA/Rho kinase pathway. Rat aortic rings were denuded of endothelium, mounted in organ baths, and contracted with either 30 nM U46619 (a thromboxane A2 analogue) or 8.0 mM NaF 30 min after pretreatment with either flavone (100 or 300 $({\mu}M$) or vehicle. We determined the phosphorylation level of the myosin light chain ($MLC_{20}$), the myosin phophatase targeting subunit 1 (MYPT1) and the protein kinase C-potentiated inhibitory protein for heterotrimeric myosin light chain phophatase of 17-kDa (CPI17) by means of Western blot analysis. Flavone inhibited, not only vascular contractions induced by these contractors, but also the levels of $MLC_{20}$ phosphorylation. Furthermore, flavone inhibited the activation of RhoA which had been induced by either U46619 or NaF. Incubation with flavone attenuated U46619 or NaF-induced phosphorylation of $MYPT1^{Thr855}$ and $CPI17^{Thr38}$, the downstream effectors of Rho-kinase. In regards to the $Ca^{2+}$-free solution, flavone inhibited the phosphorylation of $MYPT1^{Thr855}$ and $CPI17^{Thr38}$, as well as vascular contractions induced by U 46619. These results indicate that flavone attenuates vascular contractions, at least in part, through the inhibition of the RhoA/Rho-kinase pathway.

오징어 먹즙 첨가가 저 식염 오징어 젓갈의 단백질분해 특성에 미치는 영향 (Influences of Squid Ink Added to Low-Salted Squid Jeot-gal on Its Proteolytic Characteristics)

  • 오성천
    • 한국응용과학기술학회지
    • /
    • 제30권2호
    • /
    • pp.348-355
    • /
    • 2013
  • 오징어 젓갈에 오징어 먹즙을 2% 및 4% 농도로 첨가하고 $10^{\circ}C$에서 8주일간, $20^{\circ}C$에서 32일간 숙성시키면서 아미노태 질소와 근육단백질 변화를 분석한 결과는 다음과 같다. 오징어 먹즙이 첨가되지 않은 오징어 젓갈의 아미노태 질소는 식염 농도가 낮고 숙성온도가 높을수록 숙성 후반까지 계속 유의성 높게 증가하여 숙성이 촉진되었으며 오징어 근육의 단백질 변화는 myosin heavy chain이 숙성 초반에 현저히 분해되지만 actin의 변화는 거의 없어서 protease에 강하였다. 오징어 먹즙을 첨가한 오징어 젓갈의 아미노태 질소 함량은 숙성후반까지 계속 증가하였으나 증가폭은 무 첨가군에 비하여 적었으며 오징어 근육 단백질 중 myosin heavy chain은 숙성 중반에 현저히 분해되었으며 식염농도가 높고, 온도가 낮은 먹즙 첨가군은 분해 속도가 느렸다.

Comparison of Characteristics of Myosin Heavy Chain-based Fiber and Meat Quality among Four Bovine Skeletal Muscles

  • Kim, Gap-Don;Yang, Han-Sul;Jeong, Jin-Yeon
    • 한국축산식품학회지
    • /
    • 제36권6호
    • /
    • pp.819-828
    • /
    • 2016
  • Muscle fiber characteristics account for meat quality and muscle fibers are mainly classified into three or more types according to their contractile and metabolic properties. However, the majority of previous studies on bovine skeletal muscle are based on myosin ATPase activity. In the present study, the differences in the characteristics of muscle fibers classified by the expression of myosin heavy chain (MHC) among four bovine skeletal muscles such as longissimus thoracis (LT), psoas major (PM), semimembranosus (SM) and semi-tendinosus (ST) and their relationships to beef quality were investigated. MHCs 2x, 2a and slow were identified by LC-MS/MS and IIX, IIA and I fiber types were classified. PM, which had the smallest size and highest density of fibers regardless of type, showed the highest myoglobin content, CIE $L^*$, $a^*$, $b^*$ and sarcomere length (p<0.05), whereas ST with the highest composition of IIX, showed high shear force and low sarcomere length (p<0.05). The correlation coefficients between muscle fiber characteristics and meat quality showed that type IIX is closely related to poor beef quality and that a high density of small-sized fibers is related to redness and tenderness. Therefore, the differences in meat quality between muscles can be explained by the differences in muscle fiber characteristics, and especially, the muscles with good quality are composed of more small-sized fibers regardless of fiber type.

Beneficial effects of andrographolide in a rat model of autoimmune myocarditis and its effects on PI3K/Akt pathway

  • Zhang, Qi;Hu, Li-qun;Li, Hong-qi;Wu, Jun;Bian, Na-na;Yan, Guang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권2호
    • /
    • pp.103-111
    • /
    • 2019
  • The study is to investigate effects of andrographolide on experimental autoimmune myocarditis (EAM). Lewis rats were immunized on day 0 with porcine cardiac myosin to establish EAM. The EAM rats were treated with either andrographolide (25, 50, 100 mg/kg/day) or vehicle for 21 days. An antigen-specific splenocytes proliferation assay was performed by using the cells from control rats immunized with cardiac myosin. Survival rates, myocardial pathology and myocardial functional parameters (left ventricle end-diastolic pressure, ${\pm}dP/dt$ and left ventricular internal dimension) of EAM rats received andrographolide were significantly improved. Andrographolide treatment caused an decrease in the infiltration of $CD3^+$ and $CD14^+$ positive cells in myocardial tissue. Moreover, andrographolide treatment caused a reduction in the plasma levels of tumor necrosis factor-alpha, interleukin-17 (IL-17) and myosin-antibody, and an increase in the level of IL-10 in EAM rats. Oral administration of andrographolide resulted in the decreased expression of p-PI3K, p-Akt without any change of PI3K and Akt. Further results indicate andrographolide significantly inhibited myosin-induced proliferation in splenocytes, and this effect was inhibited by co-treatment of SC79 (Akt activator). Our data indicate andrographolide inhibits development of EAM, and this beneficial effect may be due to powerful anti-inflammatory activity and inhibitory effect on PI3K/Akt pathway.

Cell-cell contacts via N-cadherin induce a regulatory renin secretory phenotype in As4.1 cells

  • Chang, Jai Won;Kim, Soohyun;Lee, Eun Young;Leem, Chae Hun;Kim, Suhn Hee;Park, Chun Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권6호
    • /
    • pp.479-499
    • /
    • 2022
  • The lack of a clonal renin-secreting cell line has greatly hindered the investigation of the regulatory mechanisms of renin secretion at the cellular, biochemical, and molecular levels. In the present study, we investigated whether it was possible to induce phenotypic switching of the renin-expressing clonal cell line As4.1 from constitutive inactive renin secretion to regulated active renin secretion. When grown to postconfluence for at least two days in media containing fetal bovine serum or insulin-like growth factor-1, the formation of cell-cell contacts via N-cadherin triggered downstream cellular signaling cascades and activated smooth muscle-specific genes, culminating in phenotypic switching to a regulated active renin secretion phenotype, including responding to the key stimuli of active renin secretion. With the use of phenotype-switched As4.1 cells, we provide the first evidence that active renin secretion via exocytosis is regulated by phosphorylation/dephosphorylation of the 20 kDa myosin light chain. The molecular mechanism of phenotypic switching in As4.1 cells described here could serve as a working model for full phenotypic modulation of other secretory cell lines with incomplete phenotypes.

Differential expression of the enzymes regulating myosin light chain phosphorylation are responsible for the slower relaxation of pulmonary artery than mesenteric artery in rats

  • Seung Beom Oh;Suhan Cho;Hyun Jong Kim;Sung Joon Kim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권1호
    • /
    • pp.49-57
    • /
    • 2024
  • While arterial tone is generally determined by the phosphorylation of Ser19 in myosin light chain (p-MLC2), Thr18/Ser19 diphosphorylation of MLC2 (pp-MLC2) has been suggested to hinder the relaxation of smooth muscle. In a dual-wire myography of rodent pulmonary artery (PA) and mesenteric artery (MA), we noticed significantly slower relaxation in PA than in MA after 80 mM KCl-induced condition (80K-contraction). Thus, we investigated the MLC2 phosphorylation and the expression levels of its regulatory enzymes; soluble guanylate cyclase (sGC), Rho-A dependent kinase (ROCK) and myosin light chain phosphatase target regulatory subunit (MYPT1). Immunoblotting showed higher sGC-α and ROCK2 in PA than MA, while sGC-β and MYPT1 levels were higher in MA than in PA. Interestingly, the level of pp-MLC2 was higher in PA than in MA without stimulation. In the 80K-contraction state, the levels of p-MLC2 and pp-MLC2 were commonly increased. Treatment with the ROCK inhibitor (Y27632, 10 µM) reversed the higher pp-MLC2 in PA. In the myography study, pharmacological inhibition of sGC (ODQ, 10 µM) slowed relaxation during washout, which was more pronounced in PA than in MA. The simultaneous treatment of Y27632 and ODQ reversed the impaired relaxation in PA and MA. Although treatment of PA with Y27632 alone could increase the rate of relaxation, it was still slower than that of MA without Y27632 treatment. Taken together, we suggest that the higher ROCK and lower MYPT in PA would have induced the higher level of MLC2 phosphorylation, which is responsible for the characteristic slow relaxation in PA.

Nucleotide and Deduced Amino Acid Sequences of Rat Myosin Binding Protein H (MyBP-H)

  • Jung, Jae-Hoon;Oh, Ji-Hyun;Lee, Kyung-Lim
    • Archives of Pharmacal Research
    • /
    • 제21권6호
    • /
    • pp.712-717
    • /
    • 1998
  • The complete nucleotide sequence of the cDNA clone encoding rat skeletal muscle myosin- binding protein H (MyBP-H) was determined and amino acid sequence was deduced from the nucleotide sequence (GenBank accession number AF077338). The full-length cDNA of 1782 base pairs(bp) contains a single open reading frame of 1454 bp encoding a rat MyBP-H protein of the predicted molecular mass 52.7kDa and includes the common consensus 1CA__TG' protein binding motif. The cDNA sequence of rat MyBP-H show 92%, 84% and 41% homology with those of mouse, human and chicken, respectively. The protein contains tandem internal motifs array (-FN III-Ig C2-FN III- Ig C2-) in the C-terminal region which resembles to the immunoglobulin superfamily C2 and fibronectin type III motifs. The amino acid sequence of the C-terminal Ig C2 was highly conserved among MyBPs family and other thick filament binding proteins, suggesting that the C-terminal Ig C2 might play an important role in its function. All proteins belonging to MyBP-H member contains `RKPS` sequence which is assumed to be cAMP- and cGMP-dependent protein kinase A phosphorylation site. Computer analysis of the primary sequence of rat MyBP-H predicted 11 protein kinase C (PKC)phosphorylation site, 7 casein kinase II (CK2) phosphorylation site and 4N-myristoylation site.

  • PDF

컴퓨터 영상으로 장력발생이 근육 미치는 영향에 관한 연구 (A Study on the Effects of Muscle Membrane in Tension Development by Computer Image)

  • 신승수;김덕술
    • 한국콘텐츠학회논문지
    • /
    • 제5권4호
    • /
    • pp.71-77
    • /
    • 2005
  • 본 논문에서는 근육 분자막에서 일어나는 변화를 image plate에 의해 나타난 2차원 X선 회절상으로 구조분석 하였다. 그리고 자극장치로 분자막에 연속 전기자극을 가하여 장력발생의 시간적 변화에 미치는 영향을 규명하고자 하였다. 근육 수축 중에 X선 구조분석에 의해 관찰되어진 두드러진 변화는 근육수축을 하는 가운데 myosin head의 움직임과 수축분자의 변화가 관찰되었다. 연속자극에서의 근육은 충분히 활성화되었고, 이 시점에서 최대장력을 발생한다. 그러나 그 다음 이후의 수축에는 최대장력$(T_i-I_i)$이 거의 변화가 일어나지 않고 있다는 것을 알 수 있었다.

  • PDF

Vasorelaxing Effect of Hypoxia via Rho-kinase Inhibition on the Agonist-specific Vasoconstriction

  • Je, Hyun-Dong;Shin, Chang-Yell
    • Biomolecules & Therapeutics
    • /
    • 제16권3호
    • /
    • pp.249-254
    • /
    • 2008
  • The present study was undertaken to determine whether hypoxia influences on the agonist-induced vascular smooth muscle contraction and, if so, to investigate the related mechanism. The measurement of isometric contractions using a computerized data acquisition system was combined with molecular experiments. Hypoxia significantly inhibited fluoride-induced contraction regardless of endothelial function, but there was no relaxation on thromboxane $A_2$ mimetic U-46619-induced contraction suggesting that other pathway such as $Ca^{2+}$ entry or thin filament regulation was not affected. In addition, hypoxia significantly decreased fluoride-induced increase of phospho-myosin-targeting subunit of myosin light chain phosphatase (pMYPT1). Interestingly, hypoxia didn't inhibit significantly phenylephrine-induced contraction suggesting that myosin light chain kinase (MLCK) activity or thin filament regulation is less important on the hypoxia-induced vasorelaxation in the denuded muscle than Rho-kinase activity. In conclusion, this study provides the evidence and possible related mechanism concerning the vasodilation effect of hypoxia on the agonist-specific contraction in rat aortic rings regardless of endothelial function.

Angiotensin I-converting Enzyme Inhibitory Activities of Porcine Skeletal Muscle Proteins Following Enzyme Digestion

  • Katayama, K.;Fuchu, H.;Sakata, A.;Kawahara, S.;Yamauchi, K.;Kawamura, Y.;Muguruma, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권3호
    • /
    • pp.417-424
    • /
    • 2003
  • Inhibitory activities against angiotensin I-converting enzyme (ACE) of enzymatic hydrolysates of porcine skeletal muscle proteins were investigated. Myosin B, myosin, actin, tropomyosin, troponin and water-soluble proteins extracted from pork loin were digested by eight kinds of proteases, including pepsin, $\alpha$-chymotrypsin, and trypsin. After digestion, hydrolysates produced from all proteins showed ACE inhibitory activities, and the peptic hydrolysate showed the strongest activity. In the case of myosin B, the molar concentration of peptic hydrolysate required to inhibit 50% of the activity increased gradually as digestion proceeded. The hydrolysates produced by sequential digestion with pepsin and $\alpha$-chymotrypsin, pepsin and trypsin or pepsin and pancreatin showed weaker activities than those by pepsin alone, suggesting that ACE inhibitory peptides from peptic digestion might lose their active sequences after digestion by the second protease. However, the hydrolysates produced by sequential digestion showed stronger activities than those by $\alpha$-chymotrypsin, trypsin or pancreatin alone. These results suggested that the hydrolysates of porcine meat were able to show ACE inhibitory activity, even if they were digested in vivo, and that pork might be a useful source of physiologically functional factors.