• Title/Summary/Keyword: mycelia growth Sulfur

Search Result 3, Processing Time 0.021 seconds

Growth Inhibition Effect of Environment-friendly Agricultural Materials in Botrytis cinerea In Vitro (친환경 유기농자재의 잿빛곰팡이병 병원균의 생장 억제 효과)

  • Kwak, Young-Ki;Kim, Il-Seop;Cho, Myeong-Cheoul;Lee, Seong-Chan;Kim, Su
    • Journal of Bio-Environment Control
    • /
    • v.21 no.2
    • /
    • pp.134-139
    • /
    • 2012
  • Inhibition effects on spore germination and mycelia growth for gray mold (Botrytis cinerea) were investigated in vitro using environment-friendly agricultural materials as well as environment-friendly pesticides. The inhibition effect on mycelia growth of gray mold is the highest when the gray mold mycelia were treated with a pesticide (commercial name: Koreayeok, Jihabudea KM, Sootingtan, Sootingstar) that contains a mixture of Bacillus subtilis, resulting in 100% inhibition of the mycelia growth. Meanwhile, the range of less than 20% inhibition effects on the growth of gray mold mycelia was observed with other commercial agricultural materials. The significant inhibition effects on spore germination of gray mold fungus were shown in vitro with two water dispersible pesticides containing sulfur [BTB (97.7%) and SulfurStar (92.3%)], respectively. These in vitro results of inhibiting of the spore germination and mycelia growth together cannot found. It remains to be determined whether the selected environment-friendly agricultural materials in effective control of gray mold in vitro can be used to control gray mold in field.

Growth Inhibition Effect of Environment-friendly Farm Materials in Colletotrichum acutatum In Vitro (친환경 유기 농자재의 고추 탄저병(Colletotrichum acutatum) 병원균의 생장 억제 효과)

  • Kwak, Young-Ki;Kim, Il-Seop;Cho, Myeong-Cheoul;Lee, Seong-Chan;Kim, Su
    • Journal of Bio-Environment Control
    • /
    • v.21 no.2
    • /
    • pp.127-133
    • /
    • 2012
  • Inhibition effects on spore germination and mycelia growth for pepper anthracnose fungi (Collectricum acutatum) were investigated in vitro using eco-friendly agricultural materials as well as ecofriendly pesticides. The inhibition effect on mycelia growth of anthracnose fungi is the highest when the anthracnose mycelia were treated with a pesticide (commercial name: Koreayeok) that contains a mixture of Bacillus subtilis and Panibacillus polymyxa, resulting in 100% inhibition of the mycelia growth. Meanwhile, the range of 20~40% inhibition effects on the growth of anthracnose mycelia was observed with other commercial agricultural materials. The significant inhibition effects on spore formation of anthracnose fungus were shown in vitro with two water dispersible pesticides containing sulfur [BTB (100%) and SulfurStar (95.1%)], Koreayeok (95.0%), Borstar (99.0%) containing Bordeaux mixture, and Jihabudea-KM containing Psedomonas spp. (96.1%), respectively. Taken from these in vitro results of inhibiting of the spore germination and mycelia growth together, Koreayeok is the most effective on control of pepper anthracnose disease in vitro. In addition, two water dispersible pesticides containing sulfur (BTB and SulfurStar) and Borstar (99.0%) containing Bordeaux mixture are also significantly applicable to prevent pepper plants from anthracnose disease in vitro. It remains to be determined whether the selected eco-friendly agricultural materials in effective control of anthracnose in vitro can be used to control pepper anthracnose in field.

Fish Safety and Antimicrobial Activity of Natural Sulfur Solution on Aquatic Microorganisms (Saprolegnia parasitica) Isolated from Misgurnus mizolepis (미꾸라지(Misgurnus mizolepis)에서 분리된 수생균 (Saprolegnia parasitica)에 대한 천연유황수의 항균 활성 및 처리에 대한 어류 안전성)

  • Yi, Seung-Won;Lee, Seung-Hyeop;Lee, Sang-Jong;Kim, Mi-Hee;Lee, Hye-Hyun;Chu, Saet-Byul;Kim, Kyung-Hee;Lee, Hee Jung
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.2
    • /
    • pp.116-122
    • /
    • 2017
  • Basic dyes such as malachite green and methylene blue have been used as disinfectants to control water fungal infections since the 1930s. However, after succeeding reports of carcinogenicity and bioaccumulation of the dye, their use was forbidden in lieu of public health. This study undertook to evaluate the therapeutic effect of sulfur solution processed by effective microorganisms (EM-PSS) against Saprolegnia parasitica infection, and its safety in fish. In vitro antifungal evaluation of EM-PSS inhibited the growth of S. parasitica mycelia at concentrations of 50 ppm or higher. The acute toxicity test of EM-PSS to the mud fish (Misgurnus mizolepis) measured a no effect concentration (NOEC) at 100 ppm, the lowest effect concentration (LOEC) at 125 ppm, and the half-lethal concentration ($LC_{50}$) at 125 ppm in juvenile and 250 ppm in the immature stage. In addition, the ecotoxicity test of EM-PSS using Daphnia magna inhibited swimming of D. magna at concentrations of 100 ppm or less. Lastly, the EM-PSS prevented infection of S. parasitica to mud fish, at concentrations of 50 ppm. Furthermore, at 100 ppm concentration, the EM-PSS showed no acute toxicity on mud fish, nor any eco-toxic effects on D. magnano. Therefore, we conclude that carcinogenic disinfectants such as malachite green and methylene blue could be replaced by EM-PSS to remove S. parasitica in mud fish farming, and might be a potential eco-friendly disinfectant in aquaculture.