• Title/Summary/Keyword: muzzle velocity

Search Result 44, Processing Time 0.024 seconds

Effect of CCC Composition on Burning Characteristic for 120mm Kinetic Energy Ammunition (120미리 운동에너지탄용 소진탄피 조성이 연소 특성에 미치는 영향)

  • Kwon, Soon-Kil;Hwang, Jun-Sik;Choi, Sang-Kyung;Kim, Jin-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.146-151
    • /
    • 2005
  • The burning rates of combustible cartridge cases(CCCs) of 120mm kinetic energy ammunition were measured by CBT(Closed Bomb Tester). The burning coefficient was 1.4 for CCC fabricated by Post Impregnation(PI) process, and 1.0 for that by Beater Additive(BA) process. The BA process CCC showed the fixed burning coefficient of 1.0 in spite of changing the composition of CCC. As the Korean Future Main Battle Tank is requiring the high penetration performance compared with that of KlAl tank ammunition(K276), CCC was designed to have higher impetus composition than that of K276 composition(525J/g). The optimum impetus was 600J/g when considering the increases of pressure and muzzle velocity with increasing impetus. When impetus of CCC by changing the composition increased from 525J/g to 600J/g, the muzzle velocity of 12m/s at pressure increase of 3500psi increased in case of using SCDB propellant.

A Study on the Pressure-travel Curve of 5.56mm Rifle Obtained from the Empirical Base Pressure Factor (탄저압력계수를 이용한 5.56mm 소총의 압력-이동거리 곡선 산출)

  • Lee, Sang-Kil;Lee, Gang-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.208-216
    • /
    • 2007
  • As the propellant mass is being accelerated out of the gun chamber along with the projectile, a continuous pressure gradient exists between the end of chamber and the base of the projectile. For this reason, the base pressure-travel curve is very important to design a conventional gun barrel in the interior ballistics, but it is not obtained briefly by empirical or theoretical method. In this paper, a simple relation between chamber pressure and base pressure was determined by the factor of base pressure(Cb) obtained from the experimental method. The simple relation gives a reasonable prediction for the reduction of pressure between the breech and the base of projectile owing to the axial gradient in the gun tube. The predictions have been validated by the infrared screen sensor and the PRODAS(PROjectile Design and Analysis System) for interior ballistic systems. Therefore, the base pressure-travel curve could be calculated from the chamber pressure measured by piezoelectric sensor. The base pressure-travel curve obtained from the simple relation offers initial information to gun barrel designer and is used for calculation of muzzle velocity.

An Experimental Study on the Ballistic Accuracy by Air Guide Grooves (공기안내홈이 탄도 정확도에 미치는 실험적 연구)

  • Kim, Junkyu;Kim, Hyungse;Lee, Moonhwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.195-201
    • /
    • 2016
  • An experimental study has been found the air guide grooves for reducing drag. When a bullet is fired and move in the air, the drag is generated. The vortex which is one of the types of drag hinders the movement of the bullet. To solve this phenomenon, cut a negative grooves that we are called the air guiding grooves at the back of bullet. The grooves bullet has identified that the drag compared to conventional ammunition(KM80 and K193) is reduced to 4.480 and 4.054 : 10 % through a Finite Analysis Program($Ansys^{TM}$). Even pressure center was retreating 0.72 % compared to a Bullet(KM80 and K193). Effect obtained with these results is the accuracy of the grooves bullet in a shooting test was improved by over 32 %(KM80: 2.86, air guide grooves : 1.94) compared to conventional ammunition(KM80 and K193). In addition, muzzle velocity is increased 73 m/s. This is expected to be extended the velocity and effective range of bullet. Also, the velocity of the grooves bullet is increased when moving in the air while the velocity of the bullet(KM80 and K193) is reduced. The gas ejected from the muzzle to be balanced and stable flight of the Bullet. Given these effects, we can reckon the air guide grooves have positive influence.

Design and Experiment of Coil gun to Apply Electomagnetic Launcher System (전자기 발사장치에 적용 가능한 코일건 설계 및 실험)

  • Lee, Su Jeong;Kim, Jin Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3455-3459
    • /
    • 2014
  • This paper reports the design and experiments for a high drive force of projectile in a coil gun system. Currently, the coil gun has been studied to apply an electromagnetic launcher. A coil gun launches a projectile by the attractive magnetic force of the electromagnetic coil. The drive force of projectile is proportional to the magnetic force generated by the electromagnetic coil. The current affects the life of the coil and the current limit exists. Therefore, the coil gun design, which does not exceed the current limit and the magnetic forces are at the maximum, is required. For this purpose, this study calculated the magnetic flux density and forces of the coil gun system and determined the current limit of the coil using the Onderdonk's equation. Based on the design result, a prototype was manufactured and an experiment was conducted to measure the muzzle velocity of the projectile. The fired projectile was analyzed using a CCD camera, and the muzzle velocity was 21m/s. In addition, a comparison of the experimental value and analysis value using commercial electromagnetic analysis software MAXWELL revealed an error of approximately 9.5%.

Measuring Technique of Burn-out Indices for 2.75″ Rocket Motor (2.75인치 로켓트 모터의 연소완료지표 계측기법)

  • Kang, Kyu-Chang;Choi, Ju-Ho;Yu, Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.106-115
    • /
    • 2000
  • This paper presents the measuring technique of time and velocity when rocket motor is burnt out for 2.751" rocket. This technique use doppler effect, frequency spectrum analysis and curve fitting. In this study, we use muzzle velocity radar for doppler signal acquisition, short-time fourier transform for spectrum analysis and curve fitting for smoothing.

  • PDF

A Study on Determinants of Stockpile Ammunition using Data Mining (데이터 마이닝을 활용한 장기저장탄약 상태 결정요인 분석 연구)

  • Roh, Yu Chan;Cho, Nam-Wook;Lee, Dongnyok
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.2
    • /
    • pp.297-307
    • /
    • 2020
  • Purpose: The purpose of this study is to analyze the factors that affect ammunition performance by applying data mining techniques to the Ammunition Stockpile Reliability Program (ASRP) data of the 155mm propelling charge. Methods: The ASRP data from 1999 to 2017 have been utilized. Logistic regression and decision tree analysis were used to investigate the factors that affect performance of ammunition. The performance evaluation of each model was conducted through comparison with an artificial neural networks(ANN) model. Results: The results of this study are as follows; logistic regression and the decision tree analysis showed that major defect rate of visual inspection is the most significant factor. Also, muzzle velocity by base charge and muzzle velocity by increment charge are also among the significant factors affecting the performance of 155mm propelling charge. To validate the logistic regression and decision tree models, their classification accuracies have been compared with the results of an ANN model. The results indicate that the logistic regression and decision tree models show sufficient performance which conforms the validity of the models. Conclusion: The main contribution of this paper is that, to our best knowledge, it is the first attempt at identifying the significant factors of ASPR data by using data mining techniques. The approaches suggested in the paper could also be extended to other types ammunition data.

Non-dimensional analysis fo interior ballistics (공내탄도학의 무차원해석)

  • ;;Lee, Hung Joo;Min, Sung-Ki
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.1 no.3
    • /
    • pp.125-130
    • /
    • 1977
  • This is a dimensionless analysis of interior ballistics for the design of gun tube. One of the characteristics of this analysis is to ues the .ETA.$_{j}$ number which means a relative quantity of virtual work to the kimetic energy of projectile at the muzzle. In order to apply the concept of virtual work, it is assumed that the projectile is moved from the beginning to the end of bore under constant pressure of the certain travel distance of projectile. The principle of the analysis is induced from the Le Duc equation, which expresses velocity as a function of projectile travel and is based on the translation of a hyperbolic curve. From this non-dimensional analysis, the optimum design parameters of pressure in the bore, velocity and acceleration of projectile can be obtained from the table of figure without computation. This method was verified by the experimental work.k.

High-velocity impact of large caliber tungsten projectiles on ordinary Portland and calcium aluminate cement based HPSFRC and SIFCON slabs -Part I: experimental investigations

  • Korucu, H.;Gulkan, P.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.595-616
    • /
    • 2011
  • Impact experiments have been carried out on concrete slabs. The first group was traditionally manufactured, densely reinforced concrete targets, and the next were ordinary Portland and calcium aluminate cement based HPSFRC (High performance steel fiber reinforced concrete) and SIFCON (Slurry infiltrated concrete) targets. All specimens were hit by anti-armor tungsten projectiles at a muzzle velocity of over 4 Mach causing destructive perforation. In Part I of this article, production and experimental procedures are described. The first group of specimens were ordinary CEM I 42.5 R cement based targets including only dense reinforcement. In the second and third groups, specimens were produced using CEM I 42.5 R cement and Calcium Aluminate Cement (CAC40) with ordinary reinforcement and steel fibers 2 percent in volume. In the fourth group, SIFCON specimens including 12 percent of steel fibers without reinforcement were tested. A high-speed camera was used to capture impact and residual velocities of the projectile. Sample tests were performed to obtain mechanical properties of the materials. In the companion Part II of this study, numerical investigations and simulations performed will be presented. Few studies exist that examine high-velocity impact effects on CAC40 based HPSFRC targets, so this investigation gives an insight for comparison of their behavior with Portland cement based and SIFCON specimens.

Experimental and Numerical Studies on a Test Equipment for the Replication of Flight Motions of Spin-Stabilized Ammunition (회전안정탄약의 비행운동 모사장치에 대한 실험적·수치해석적 연구)

  • Lee, Youngki;Park, Sungtaek;Song, Yihwa;Choi, Minsu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.728-735
    • /
    • 2015
  • A gas gun system to replicate the flight motions of large caliber spin-stabilized ammunition has been investigated experimentally and numerically. The system is specially designed to study aerodynamic characteristics and dynamics of a flight body ejected from a cargo shell or a subsonic projectile itself at up to 2,000 rpm and 100 m/s. Raynolds-averaged Navier-Stokes equations with a overset mesh technique and 6-DOF dynamics were solved to decide the chamber pressure according to the muzzle velocity input by users. The predicted velocity values show less than 6 % of discrepancies compared to experimental data. The system has successfully been tested for the simulation of deployment of a parafoil for a 155 mm gun-launched projectile.

A Study on Vibration Reduction Timing Selection in the Mobile Pointing System (기동장비용 지향구조물의 진동 감소 상태선정 연구)

  • Yoo, Jin-Ho;Lee, Dong-Ju
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.112-119
    • /
    • 2007
  • In order to predict vibration trends occurred during vehicle drive, acceleration data was processed by using data processing algorithm with moving average and Hilbert transform. Specific mode constants of acceleration were obtained under various disturbance. Vehicle velocity, road condition, property of pointing structure were considered as factors which make change of vibration trend in vehicle dynamics. Results of signal processing were compared and analysed. Advanced performance of the timing selection algorithm from this study was verified by using simple equipment comparing with the deflection measurement laser system(Muzzle Reference System).