• 제목/요약/키워드: muscle differentiation

검색결과 289건 처리시간 0.039초

Directed Differentiation of Pluripotent Stem Cells by Transcription Factors

  • Oh, Yujeong;Jang, Jiwon
    • Molecules and Cells
    • /
    • 제42권3호
    • /
    • pp.200-209
    • /
    • 2019
  • Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been used as promising tools for regenerative medicine, disease modeling, and drug screening. Traditional and common strategies for pluripotent stem cell (PSC) differentiation toward disease-relevant cell types depend on sequential treatment of signaling molecules identified based on knowledge of developmental biology. However, these strategies suffer from low purity, inefficiency, and time-consuming culture conditions. A growing body of recent research has shown efficient cell fate reprogramming by forced expression of single or multiple transcription factors. Here, we review transcription factor-directed differentiation methods of PSCs toward neural, muscle, liver, and pancreatic endocrine cells. Potential applications and limitations are also discussed in order to establish future directions of this technique for therapeutic purposes.

닭 혈청을 포함한 배양액 조성 변화가 QM7 메추리 근육세포의 성장 및 분화에 미치는 영향 분석 (Effect of Culture Medium Containing Chicken Serum on Growth and Differentiation of QM7 Quail Muscle Cells)

  • 최사랑;이상인;신상수
    • 한국가금학회지
    • /
    • 제49권2호
    • /
    • pp.109-114
    • /
    • 2022
  • 메추리 근육세포주인 QM7 세포는 다양한 연구에서 이용되고 있다. 세포배양에 있어서, 배양액의 조건은 세포의 성장과 분열에 많은 영향을 미친다고 알려져 있다. 본 연구는 QM7 근육세포 배양에 좀더 적절한 배양액 조성을 맞추어 나가기 위해 진행되었다. 이를 위해 세포배양 시, 기존에 사용하던 배양액에서 10% tryptose phosphate broth(TPB) 대신 2% chicken serum(CS)를 넣어 만든 배양액을 기존 배양액을 사용하는 경우와 비교하였다. CS를 넣어 만든 배양액에서 QM7 근육세포는 가늘고 뾰족한 모양에서 좀더 넓어지는 모양으로 바뀌었다. 또한, 기존 배양액에서보다 CS를 넣어 만든 배양액에서 더 빠르게 성장하고 분열하였다. 이는 세포 계대 후 2일차부터 증가하기 시작하여 3일차부터는 세포수가 유의적으로 많았다. CS를 넣은 배양액에서 유지한 근육세포는 분화 전에는 그 미분화 상태를 잘 유지하고 있다가, 분화를 유도하면 근관 형성이 잘 일어나 길이가 좀더 길고 일정하게 분화되는 것을 확인하였다. 이상의 결과에 따라, QM7 근육세포를 배양하는데 있어서 TPB를 이용하는 것보다 CS를 이용하면, 세포의 유지 및 분화에 있어 더 좋은 결과를 얻을 수 있을 것으로 사료된다.

Dynamical Expression of MicroRNA-127-3p in Proliferating and Differentiating C2C12 Cells

  • Li, Jie;Wang, Gaofu;Jiang, Jing;Zhou, Peng;Liu, Liangjia;Zhao, Jinhong;Wang, Lin;Huang, Yongfu;Ma, Youji;Ren, Hangxing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권12호
    • /
    • pp.1790-1795
    • /
    • 2016
  • MicroRNAs (miRNAs) are highly conserved, short non-coding RNAs that regulate gene expression at the posttranscriptional level. Although many miRNAs are identified in muscles and muscle cells, their individual roles are still not fully understood. In the present study, we investigated a muscle highly-expressed miRNA, miR-127-3p, in C2C12 myoblasts and tissues of goats with different muscle phenotypes (Boer vs Wushan black goats). Our results demonstrated that i) miR-127-3p was extensively expressed in tissues of goats; ii) miR-127-3p was higher expressed in muscle, spleen, heart, and skin in the muscular goats (Boer goats) than the control (Wushan black goats). Then we further characterized the dynamical expression of miR-127-3p, MyoD, MyoG, Myf5, Mef2c, and Myosin in the proliferating and differentiating C2C12 myoblasts at day of 0, 1, 3, 5, and 7 in culture mediums. Especially, we found that miR-127-3p was significantly higher expressed in the proliferating than differentiating cells. Our findings suggest that miR-127-3p probably plays roles in the proliferation and differentiation of myoblasts, which further underlies regulation of muscle phenotype in goats.

Ursolic acid improves the indoxyl sulfate-induced impairment of mitochondrial biogenesis in C2C12 cells

  • Sasaki, Yutaro;Kojima-Yuasa, Akiko;Tadano, Hinako;Mizuno, Ayaka;Kon, Atsushi;Norikura, Toshio
    • Nutrition Research and Practice
    • /
    • 제16권2호
    • /
    • pp.147-160
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Patients with chronic kidney disease (CKD) have a high concentration of uremic toxins in their blood and often experience muscle atrophy. Indoxyl sulfate (IS) is a uremic toxin produced by tryptophan metabolism. Although an elevated IS level may induce muscle dysfunction, the effect of IS on physiological concentration has not been elucidated. Additionally, the effects of ursolic acid (UA) on muscle hypertrophy have been reported in healthy models; however, it is unclear whether UA ameliorates muscle dysfunction associated with chronic diseases, such as CKD. Thus, this study aimed to investigate whether UA can improve the IS-induced impairment of mitochondrial biogenesis. MATERIALS/METHODS: C2C12 cells were incubated with or without IS (0.1 mM) and UA (1 or 2 μM) to elucidate the physiological effect of UA on CKD-related mitochondrial dysfunction and its related mechanisms using real-time reverse transcription-polymerase chain reaction, western blotting and enzyme-linked immunosorbent assay. RESULTS: IS suppressed the expression of differentiation marker genes without decreasing cell viability. IS decreased the mitochondrial DNA copy number and ATP levels by downregulating the genes pertaining to mitochondrial biogenesis (Ppargc1a, Nrf1, Tfam, Sirt1, and Mef2c), fusion (Mfn1 and Mfn2), oxidative phosphorylation (Cycs and Atp5b), and fatty acid oxidation (Pdk4, Acadm, Cpt1b, and Cd36). Furthermore, IS increased the intracellular mRNA and secretory protein levels of interleukin (IL)-6. Finally, UA ameliorated the IS-induced impairment in C2C12 cells. CONCLUSIONS: Our results indicated that UA improves the IS-induced impairment of mitochondrial biogenesis by affecting differentiation, ATP levels, and IL-6 secretion in C2C12 cells. Therefore, UA could be a novel therapeutic agent for CKD-induced muscle dysfunction.

Identification of candidate proteins regulated by long-term caloric restriction and feed efficiency in longissimus dorsi muscle in Korean native steer

  • Jung, Usuk;Kim, Minjeong;Wang, Tao;Lee, Jae-Sung;Seo, Seongwon;Lee, Hong-Gu
    • Journal of Animal Science and Technology
    • /
    • 제64권2호
    • /
    • pp.330-342
    • /
    • 2022
  • We aimed to investigate candidate proteins related to long-term caloric restriction and feed efficiency in bovine longissimus dorsi muscle (LM). A total of 31 Korean native steers were randomly distributed to ad libitum (n = 16) or caloric restriction group (n = 15) to conduct two feeding trials for 13 mon. In the first trial (10-18 mon of age), steers were fed with 100% ad libitum (NEg = 0.63 Mcal/kg) or caloric restriction (80% of the previous day's feed intake of ad libitum group). In the second trial (18-23 mon of age), the energy value of 100% ad libitum diet was 1.13 Mcal/kg NEg and those in caloric restriction group diet was 0.72 Mcal/kg NEg. At the endpoint of this experiment, in each group, 6 animals were selected with high (n = 3) or low feed efficiency (n = 3) to collect muscle tissue samples (6 animals/group). From muscle tissues of 23 mo of age, we excavated 9 and 12 differentially expressed (two-fold or more) proteins in a nutritional group and feed efficiency group using two-dimensional electrophoresis, respectively. Of these proteins, heat shock protein beta-6 was up-regulated in both the caloric restriction and the low feed efficiency group. In bovine embryonic fibroblasts, the mRNA expression of heat shock protein beta-6 increased after adipogenic differentiation, however, decreased after myogenic differentiation. Our data provide that heat shock protein beta-6 may be an adipogenic protein involved in the mechanism of caloric restriction and feed efficiency in the LM of the steer.

청심연자음(淸心蓮子飮)이 Mouse유래 $C_2Cl_{12}$세포주에서 심근세포 손상의 보호 효과 (Effect of Chungsimyeonjaeum on myocardiac cell injury in mouse myoblast $C_2Cl_{12}$ cells)

  • 이상헌;박치상
    • 대한한의학회지
    • /
    • 제27권3호
    • /
    • pp.26-37
    • /
    • 2006
  • Determination and differentiation of cells in the skeletal muscle lineage is positively regulated by cell-cell contact. Differentiation proteins proposed to mediate this effect include both classical MyoD and MEF members; potential interactions between the promyogenic activities of these classes of protein, however, are unknown. We show here that MyoD and MEF, two promyogenic family members that relate to each other in a cis fashion, form interactions with MyoD and MEF. These proteins contain myosin-heavy chainsand are enriched at sites of cell-cell contact between myoblasts. Therefore, in differentiation of MyoD and MEF from Chungsimyeonjaeum interact dependently, suggesting that the interactions occur in a cis fashion; consistent with this conclusion, MyoD-mediated differentiation is required for myoblasts to occur by Chungsimyeonjaeum. Inhibition in myoblasts of a MyoD by Staurosporine in its ability to associate with MEF interferes with differentiation as assessed by morphological and transcription levels, suggesting that this interaction is functionally important in myogenesis. Also, some of the differentiation-mediated proteins that are required for myogenesis seem to be based on interdependent activities of the promyogenic classical smad-subfamily.

  • PDF

Saturated fatty acid-inducible miR-103-3p impairs the myogenic differentiation of progenitor cells by enhancing cell proliferation through Twinfilin-1/F-actin/YAP1 axis

  • Mai Thi Nguyen;Wan Lee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권3호
    • /
    • pp.277-287
    • /
    • 2023
  • Actin dynamics play an essential role in myogenesis through multiple mechanisms, such as mechanotransduction, cell proliferation, and myogenic differentiation. Twinfilin-1 (TWF1), an actin-depolymerizing protein, is known to be required for the myogenic differentiation of progenitor cells. However, the mechanisms by which they epigenetically regulate TWF1 by microRNAs under muscle wasting conditions related to obesity are almost unknown. Here, we investigated the role of miR-103-3p in TWF1 expression, actin filament modulation, proliferation, and myogenic differentiation of progenitor cells. Palmitic acid, the most abundant saturated fatty acid (SFA) in the diet, reduced TWF1 expression and impeded myogenic differentiation of C2C12 myoblasts, while elevating miR-103-3p levels in myoblasts. Interestingly, miR-103-3p inhibited TWF1 expression by directly targeting its 3'UTR. Furthermore, ectopic expression of miR-103-3p reduced the expression of myogenic factors, i.e., MyoD and MyoG, and subsequently impaired myoblast differentiation. We demonstrated that miR-103-3p induction increased filamentous actin (F-actin) and facilitated the nuclear translocation of Yes-associated protein 1 (YAP1), thereby stimulating cell cycle progression and cell proliferation. Hence, this study suggests that epigenetic suppression of TWF1 by SFA-inducible miR-103-3p impairs myogenesis by enhancing the cell proliferation triggered by F-actin/YAP1.

Molecular and functional characterization of the adiponectin (AdipoQ) gene in goat skeletal muscle satellite cells

  • Wang, Linjie;Xue, Ke;Wang, Yan;Niu, Lili;Li, Li;Zhong, Tao;Guo, Jiazhong;Feng, Jing;Song, Tianzeng;Zhang, Hongping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권8호
    • /
    • pp.1088-1097
    • /
    • 2018
  • Objective: It is commonly accepted that adiponectin binds to its two receptors to regulate fatty acid metabolism in adipocytes. To better understand their functions in the regulation of intramuscular adipogenesis in goats, we cloned the three genes (adiponectin [AdipoQ], adiponectin receptor 1 [AdipoR1], and AdipoR2) encoding these proteins and detected their mRNA distribution in different tissues. We also determined the role of AdipoQ in the adipogenic differentiation of goat skeletal muscle satellite cells (SMSCs). Methods: SMSCs were isolated using 1 mg/mL Pronase E from the longissimus dorsi muscles of 3-day-old female Nanjiang brown goats. Adipogenic differentiation was induced in satellite cells by transferring the cells to Dulbecco's modified Eagle's medium supplemented with an isobutylmethylxanthine, dexamethasone and insulin cocktail. The pEGFP-N1-AD plasmid was transfected into SMSCs using Lipofectamine 2000. Expression of adiponectin in tissues and SMSCs was detected by quantitative polymerase chain reaction and immunocytochemical staining. Results: The three genes were predominantly expressed in adipose and skeletal muscle tissues. According to fluorescence and immunocytochemical analyses, adiponectin protein expression was only observed in the cytoplasm, suggesting that adiponectin is localized to the cytoplasm of goat SMSCs. In SMSCs overexpressing the AdipoQ gene, adiponectin promoted SMSC differentiation into adipocytes and significantly (p<0.05) up-regulated expression of AdipoR2, acetyl-CoA carboxylase, fatty-acid synthase, and sterol regulatory element-binding protein-1, though expression of CCAAT/enhancer-binding $protein-{\alpha}$, peroxisome proliferator-activated receptor ${\gamma}$, and AdipoR1 did not change significantly. Conclusion: Adiponectin induced SMSC differentiation into adipocytes, indicating that adiponectin may promote intramuscular adipogenesis in goat SMSC.

논우렁이 촉수(觸手) 수축근(收縮筋)의 미세구조(微細構造) (An Ultrastructural Study of Tentacular Retractor Muscle of Chinese Mystery Snail, Cipangopaludina chinensis malleata Reeve)

  • 송용직;김우갑;김창환
    • Applied Microscopy
    • /
    • 제17권2호
    • /
    • pp.31-40
    • /
    • 1987
  • The tentacular retractor muscle has many arrays of muscle fiber bundles under the epithelial layer. Most of muscle fiber bundles are arranged in parallel to the longitudinal axes of muscle fibers and a small number of them perpendiculary to them. These smooth muscle cells are filled with compactly arranged myosins and actins. These microfilaments, when the tentacle is protracted, keep abreast with straight for-ward-lined shapes while these microfilaments, when it is retracted, with curved shapes. The foldings in the sarcolemma of the muscle cell, when the tentacle is retracted, lead to the formation of normal subsurface tubules along with which a few mitochondria are included. It is thought that the formation of the sarcolemmal differentiation like the subsurface tubules has a close relation with the protraction and retraction of the tentacle. Mitochondria are found throughout the muscle cell, and sarcoplasmic reticulum (SR) developed greatly in the exoplasm close to the sarcolemma and associated with the cell membrane. Dense bodies are distributed irregularly and thin filaments are scattered around the thick filament in cross-sections, but the thin filaments may be arranged in complete or partial orbits around thick filaments. Complete orbits are infrequent.

  • PDF