• Title/Summary/Keyword: murine peritoneal macrophages

Search Result 101, Processing Time 0.022 seconds

Production of superoxide anion, nitric oxide and tumor necrosis factor-$\alpha$ by cultured murine peritoneal leukocytes is inhibited by taurine chloramine

  • Kim, Chaekyun;Park, Eunkyue;Michael R. Quinn
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.177-177
    • /
    • 1996
  • Taurine Chloramine (Tau-Cl) inhibits production of nitric oxide(NO) and tumor necrosis factor-alpha (TNF-${\alpha}$) in activated peritoneal macrophages, similar In that previously reported for activated RAW 264.7 cells. In addition, the effect of Tau-Cl and taurine on superoxide anion (O$\_$2/$\^$-/) Production in murine peritoneal exudate polymorphonuclear leukocytes (PMN) was examined. Tau-Cl inhibited O$\_$2/$\^$-/ production in a manner that was dose-dependent and reversible, Taurine also inhibited O$\_$2/$\^$-/ production by stimulated PMN, but at higher concentrations and to a lesser extent than Tau-Cl. The effects of taurine on O$\_$2/$\^$-/ production was attributed to the in vitro formation of Tau-Cl catalyzed by PMN associated halide-dependent myeloperoxidase. In contrast, production of NO and TNF-${\alpha}$ by activated peritoneal exudate macrophages was inhibited by Tau-Cl while taurine was without effect. These data lend support to the notion that Tau-Cl may participate ill the inflammatory responses by modulating production of inflammatory mediators.

  • PDF

Size Heterogeneity of Murine Tumor Necrosis Factors Induced from Mouse Peritoneal Macrophages

  • Baik, Na-Gyoung;Jeong, Jee-Yeong;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.28 no.1
    • /
    • pp.46-50
    • /
    • 1995
  • Three kinds of mouse tumor necrosis factor (TNF), which have molecular weights of 35 kDa, 45 kDa, and 18 kDa on SDS-PAGE, were partially purified from serum-free culture supernatants of mouse peritoneal macrophages induced with lipopolysaccharide. Analysis of the native molecular weights by gel filtration indicated that the 18 kDa and 45 kDa TNFs aggregate into 50 kDa and 100 kDa molecules, respectively, while the 35 kDa TNF is contained in high molecular weight aggregates of approximately 200 kDa. The three kinds of cytotoxic factors all elicited tumor reducing responses.

  • PDF

EFFECT OF CAPSAICIN ON LPS-INDUCED PROSTAGLANDIN E2 PRODUCTION BY MURINE PERITONEAL MACROPHAGES

  • Kim, Chu-Sook;Kim, Byung-Sam;Han, In-Seob;Chei, Suck-Young;Kwon, Byung-Se;Rina Yu
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.132-132
    • /
    • 2001
  • Proinflamamtory mediators such as prostaglandins (PGs), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) are known to be key mediators in pathogenesis of inflammatory diseases. Capsaicin, the major ingredient of hot pepper, is considered to elicit anti-inflammatory property. In this study, the effect of capsaicin on the prostaglandin E$_2$(PGE$_2$) production was investigated in murine peritoneal macrophages.(omitted)

  • PDF

Inhibitory Effects of Simazine on Various Functions of Peritoneal Macrophages (Simazine이 복강 대식세포의 기능에 미치는 영향)

  • 김경란;손은화;이동권;표석능
    • Biomolecules & Therapeutics
    • /
    • v.10 no.4
    • /
    • pp.224-229
    • /
    • 2002
  • Triazine herbicide has been reported to directly suppress the immune response. In the present study, we examined various functions of murine peritoneal macrophages that were isolated and stimulated with LPS after simazine (300 and 600 mg/kg body weight), a triazine herbicide, was administered every day for 4 weeks. Simazine decreased the capacity of phagocytosis, compared to those of carboxymethylcellulose (CMC)-treated control group. In addition, the production of NO and TNF-$\alpha$ was decrcased in macrophages of simazinetreated mice. However, the production of hydrogen peroxide ($H_{2}O_{2}$) was not altered. In vitro tumoricidal activity of in vivo simazine-treated macrophages was reduced against target cell. B 16 melanoma. Taken together, these results suggested that simazine might have the immunosuppressive effect on macrophages after in vivo exposure, which was related to the reduction of tumoricidal activity.

Inhibition of Nitric Oxide Synthesis by Methanol and Butanol Extracts of Euonymus Alatus (Thunb.) Sieb in Murine Macrophages

  • Lee Hyo-Hyun;Park Young-Soo;Kim Ra-Young;Kim Dong-Il;Lee Tae-Kyun
    • The Journal of Korean Medicine
    • /
    • v.26 no.1 s.61
    • /
    • pp.26-36
    • /
    • 2005
  • Objective : Many traditional herbal remedies exhibit several beneficial effects including anti-inflammation. Euonymus alatus (Thunb.) Sieb (EA), known as Gui jun woo in Korea, has long been used in folk medicine to regulate Qi (bodily energy) and blood circulation, relieve pain, eliminate stagnant blood, and treat dysmenorrhea in oriental countries. The exact mechanism of the anti-inflammatory action of Euonymus alatus (Thunb.) Sieb (EA), however, has not been determined. Methods: Since there is increasing evidence that nitric oxide (NO) plays a crucial role in the pathogenesis of inflammatory diseases, this study was undertaken to address whether the methanol (MeOH) extract and its fractions of the bark of EA could modulate the expression of inducible NO synthase (iNOS) in thioglycollate-elicited murine peritoneal macrophages and murine macrophage cell line, RA W264.7 cells. Results: Stimulation of the peritoneal macrophages and RAW264.7 cells with $interferon-\gamma\;(IFN-\gamma)$ and lipopolysaccharide (LPS) resulted in increased production of NO in the medium. However, the butanol (BuOH) fraction of the MeOH extract of EA barks showed marked inhibition of NO synthesis in a dose-dependent manner. The inhibition of NO synthesis was reflected in the decreased amount of iNOS protein, as determined by Western blotting. The BuOH fraction did not affect the viability of RA W264.7 cells, as assessed by methylthiazol-2-yl-2, 5-diphenyl tetrazolium bromide (MTT) assay; rather, it reduced endogenous NO-induced apoptotic cell death via inhibition of NO synthesis in RAW264.7 cells. On the other hand, the MeOH and BuOH fraction showed no inhibitory effect on the synthesis of NO by RAW264.7 cells, when iNOS was already expressed by the stimulation with $IFN-\gamma$ and LPS. Conclusion: Collectively, these results demonstrate that the MeOH and BuOH fraction inhibits NO synthesis by inhibition of the induction of iNOS in murine macrophages.

  • PDF

Effects of the Administration of water extract of Juglandis Semen without Inner cortex and with Inner cortex on Activity of Splenocytes and Macrophages in Mice (호두 속껍질 없는 것과 있는 것의 물 추출물 투여가 생쥐의 비장세포 및 대식세포의 활성에 미치는 영향)

  • Park, Hoon;Lee, Kyung-A;Kwon, Jin;Ahn, Mun-Saeng;Eun, Jae-Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1217-1222
    • /
    • 2006
  • The purpose of this research was to investigate the effects of the administration of Juglandis Semen without inner cortex (JE) or with inner cortex (JEIC) on activity of splenocytes and peritoneal macrophages in BALB/C mice. JE (300 mg/kg, p.o.) did not affect the cell viability of T- and B-lymphocytes in murine splenocytes, but JEIC (300mg/kg, p.o.) increased the cell viability of T- and B-lymphocytes. Furthermore, JE decreased the population of B220$^+$ cells in splenocytes, but JEIC enhanced the population of Thyl$^+$ cells. Also, JEIC enhanced the population of splenic CD4$^+$ cells. JE decreased the production of nitric oxide and the phagocytic activity of peritoneal macrophages, but JEIC increased the production of nitric oxide and the phagocytic activity of peritoneal macrophages. These results suggest that JEIC is more potent than JE against the immune response induced by splenocytes and macrophages.

Regulation of Cytokine Production by Exogenous Nitric oxide in Murine Splenocyte and Peritoneal Macrophage

  • Eun, Jae-Soon;Suh, Yong-Hoon;Kim, Dae-Keun;Jeon, Hoon
    • Archives of Pharmacal Research
    • /
    • v.23 no.5
    • /
    • pp.531-534
    • /
    • 2000
  • Nitric oxide (NO), products of activated macrophages, have a great impact on the regulation of cytokine production. The role of NO in non-specific host cells is commonly accepted. On the contrary, its role as an immuno-regulatory molecule is still controversial. In this study, we have investigated the effect of NO on the production of cytokines from murine splenocytes and macrophages. S-nitroso-L-glutathione inhibited the release of both interferone-$\gamma$ and interleukin-2 produced by Th1 cells and tumor necrosis factor-$\alpha$ and interleukin-1$\beta$ produced by macrophages, but did not affect the release of interleukin-4 and interleukin-10 produced by Th2 cells. These results suggest that NO exerts a down-regulatory effect on the secretion of cytokines from Th1 cells and macrophages which are implicated in immune response. Thus, NO may have an important role as an immune-modulatory as well as effector molecule in the immune system.

  • PDF

Expression of Chemokine and Tumor Necrosis Factor Alpha Genes in Murine Peritoneal Macrophages Infected with Orientia tsutsugamushi

  • Koh, Young-Sang
    • Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.186-194
    • /
    • 2001
  • Scrub typhus, caused by Orientia tsutsugamushi infection, is clinically and histopathologically characterized by local as well as systemic inflammatory reactions, indicating that orientiae induce mechanisms that amplify the inflammatory response. To reveal underlying mechanisms of chemoattraction and activation of responding leukocytes, expression of chemokine and tumor necrosis factor alpha (TNF-$\alpha$) genes in murine peritoneal macrophages after infection with the obligate intracellular bacterium Ο.tsutsugamushi was investigated. The genes that were unregulated included macrophage inflammatory proteins l$\alpha$/$\beta$(MIP-l$\alpha$/$\beta$), MIP-2, monocyte chemoattractant protein 1(MCP-1), RANTES (regulated upon activation, normal T-cell expressed and secreted), gamma-interferon-inducible protein 10(IP-10) and TNF-$\alpha$. Peak expression of these chemokines and TNF-$\alpha$ was observed between 1 and 3 h after infection. These responses returned to or approached baseline preinfection levels 6 h after challenge. Semiquantitative reverse transcription (RT)-PCR analysis revealed dramatic Increases during infection in the steady-state levels of mRNA ceding for the inhibitory subunit of NF-kB (IkB$\alpha$), whose transcription is enhanced by binding of NF-kB within the IkB$\alpha$promoter region. Thus, Ο. tsutsugamushi appears to be a stung inducer of chemokines and TNF-$\alpha$ which may significantly contribute to inflammation and tissue damage observed in scrub typhus by attracting and activating phagocytic leukocytes.

  • PDF

Anti-inflammatory effect of extract of Pulsatilla koreana $N_{AKAI}$ in LPS-stimulated Murine peritoneal macrophage (LPS 로 활성화된 복강 대식세포에서 백두옹 추출물의 항염증 효과)

  • Park, Sung-Joo;Song, Ho-Joon
    • The Korea Journal of Herbology
    • /
    • v.22 no.1
    • /
    • pp.111-117
    • /
    • 2007
  • Objectives : The purpose of this study was to investigate the anti-inflammatory effects of extract from Pulsatilla koreana $N_{AKAI}$ (PK) on the peritoneal macrophage. Methods : To evaluate of anti-inflammatory of PK, we examined cytokines and NO production in lipopolysacchride (LPS)-induced macrophages. Furthermore, we examined molecular mechanism using western blot. Results : 1.Extract from PK reduced LPS-induced NO, tumor necrosis factor-a ($TNF-{\alpha}$), interleukin (IL)-6 and IL-12 production in peritoneal macrophages. 2.Extract from PK itself does not have any cytotoxic effect. PK inhibited the activation of extracelluar signal-regulated kinase(ERK 1/2) but not another mitogen-activated protein kinases (MAPKs) such as p38, c-Jun NH2-terminal kinase (JNK) and the degradation of inhibitory kappa B a ($I_{k}B_{a}$) does not any effect in the LPS-stimulated peritoneal macrophages. Conclusion : PK down-regulated LPS-induced NO and cytokines production, which may be provide a clinical basis for anti-inflammatory properties of PK.

  • PDF

DOWN REGULATION OF TGF-$\beta$ GENE EXPRESSION BY ANTISENSE OLIGO-DEOXYNUCLEOTIDES INCREASE rIFN-${\gamma}$-INDUCED NITRIC OXIDE SYNTHESIS IN MURINE PERITONEAL MACROPHAGES

  • Jun, Chang-Duk;Kim, Su-Ung;Lee, Seong-Yong;Chung, Hun-Taeg
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.78-78
    • /
    • 1995
  • Increasing evidence indicates that the production of nitric oxide (NO) by inducible NO synthase (NOS) is tightely regulated. Transforming growth factor-${\beta}$ (TGF-${\beta}$) is a homodimeric protein secreted during macrophage activation, but several lines of evidence suggest that TGF-${\beta}$ is selectively suppressive for macrophage NO production. We therefore reasoned that a strategy employing oligodeoxynucleotides(ODNs) complemently to TGF-${\beta}$ mRNA (antisense ODNs) might increase NO production in IFN-${\gamma}$-treated murine peritoneal macrophages. To evaluate this concept, we tested the effects of antisense ODNs targeted to TGF-${\beta}$ mRNA (25-mer ODNs complemently to TGF-${\beta}$mRNA sequences) by introducing it into the medium of cultured macrophages. Phosphorothiolation of ODNs were employed to retard their degradation. Antisense ODNs had no effect on NO production by itself, whereas IFN-${\gamma}$ alone had modest effect. When antisense ODNs were used in combination with IFN-${\gamma}$, there was a marked cooperative induction of NO production, These effects of antisense ODNs were associated with decreased TGF-${\beta}$ expression in activated macrophages. ODNs with the same nucleotides but a scrambled sequence had no effect. Adding anti-TGF-${\beta}$ antibodies to the IFN-${\gamma}$-treated macrophages mimicked the positive effect of antisense ODNs on NO production. In addition, the effects of either antisense ODNs or anti-TGF-${\beta}$ antibodies were blocked by adding TGF-${\beta}$ in cultured macrophages. These results indicate that the generation of TGF-${\beta}$ by activated macrophages provides a self-regulating mechanism by which the temporal and perhaps spatial production of NO, a reactive and potentially toxic mediator, can be finely regulated.

  • PDF