• Title/Summary/Keyword: murine macrophages

Search Result 344, Processing Time 0.035 seconds

Anti-inflammatory Effects of Staphylea bumalda Leaves Extracts in Murine Macrophages (쥐 대식세포에 대한 고추나무(Staphylea bumalda) 잎의 항염증 효과 검증)

  • Kim, Jeong Hwa;Lee, Jae Kwon
    • YAKHAK HOEJI
    • /
    • v.59 no.6
    • /
    • pp.251-258
    • /
    • 2015
  • Aim of the present study was to investigate whether methanol extract from the leaves of Staphylea bumalda could be used to suppress lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophage cell lines, Raw 264.7 cells. The extract reduced nitric oxide (NO), cyclooxigenase-2 (COX-2) and pro-inflammatory cytokines production from LPS-stimulated Raw 264.7 cells. These inhibitory effects were associated with decreases in the phosphorylation of MAP kinases and the activity of $NF{\kappa}B$ signal pathways. Our results indicate that Staphylea bumalda significantly inhibits the inflammatory activity of activated macrophages, suggesting that Staphylea bumalda could be a potential candidate for the treatment of inflammatory disease.

Inhibition of nitric oxide and TNF-$\alpha$ production by propenone compound through blockaded of NF-$\kappa$B activation in cultured murine macrophages

  • Ju, Hye-Kyung;Lee, Eun-Kyung;Jahng, Yurng-Dong;Lee, Eung-Seok;Chang, Hyeun-Wook
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.156.2-157
    • /
    • 2003
  • Lipopolysaccharide (LPS)-stimulated macrophages produced a large amounts of nitric oxide (NO) by inducible nitric oxide synthase (iNOS). This is an important mechanism in macrophages-induced septic shock and inflammation. In the present study, we tested a synthetic propenone compound, l-furan-2-yl-3-pyridin-2-yl-propenone (FPP-3) for its ability to inhibit the production of tumor necrosis factor-a (TNF-$\alpha$) and an inducible enzyme, iNOS, in the LPS-stimulated murine macrophage-like cell line, Raw264.7. FPP-3 consistently inhibited nitric oxide (NO) and TNF-$\alpha$ production in a dose dependent manner, with $IC_50$> values of 10.0 and 13.1 $\mu$M, respectively. (omitted)

  • PDF

Proteome Profiling of Murine Macrophages Treated with the Anthrax Lethal Toxin (탄저 치사독소 처리에 의한 생쥐 대식세포의 단백질체 발현 양상 분석)

  • Jung Kyoung-Hwa;Seo Giw-Moon;Kim Sung-Joo;Kim Ji-Chon;Oh Seon-Mi;Oh Kwang-Geun;Chai Young-Gyu
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.262-268
    • /
    • 2005
  • Intoxication of murine macrophages (RAW 264.7) with the anthrax lethal toxin (LeTx 100 ng/ml) results in profound alterations in the host cell gene expression. The role of LeTx in mediating these effects is unknown, largely due to the difficulty in identifying and assigning function to individual proteins. In this study, we have used two-dimensional polyacrylamide gel electrophoresis to analyze the protein profile of murine macrophages treated with the LeTx, and have coupled this to protein identification using MALDI-TOF mass spectrometry. Interpretation of the peptide mass fingerprint data has relied primarily on the ProFound database. Among the differentially expressed spots, cleaved mitogen-activated protein kinase kinase (Mek1) and glucose-6-phosphate dehydrogenase were increased in the LeTx treated macrophages. Mek1 acts as a negative element in the signal transduction pathway, and G6PD plays the role for the protection of the cells from the hyper-production of active oxygen. Our results suggest that this proteomic approach is a useful tool to study protein expression in intoxicated macrophages and will contribute to the identification of a putative substrate for LeTx.

Comparative Analysis on the Cytotoxicity of Naegleria fowleri and N. gruberi to Macrophages by the Addition of Saccharides

  • Jung, Suk-Yul
    • Biomedical Science Letters
    • /
    • v.16 no.4
    • /
    • pp.221-227
    • /
    • 2010
  • To elucidate the invasion mechanism of pathogenic Naegleria fowleri, especially a receptor-ligand recognition, we investigated the in vitro cytotoxicity of pathogenic N. fowleri and nonpathogenic N. gruberi to murine macrophages, RAW 264.7, by adding four kinds of saccharides, ${\alpha}$-fucose, ${\beta}$-galactose, ${\alpha}$-D-mannopyranoside (${\alpha}$-mannose) and xylose. There was not enough of a difference in the cytotoxicity of N. fowleri treated with 10 mM of each saccharide. In particular, the cytotoxicity of N. fowleri was highly inhibited by 100 mM ${\alpha}$-mannose, which was 62.3% inhibition calculated by the analysis of lactate dehydrogenase (LDH) release assay. Although murine macrophages were not significantly destroyed by nonpathogenic N. gruberi under hematoxylin staining, the cytotoxicity of N. gruberi was inhibited from 31.5% to 14.5% (P<0.01) by 100 mM ${\alpha}$-mannose treatment. The binding of N. fowleri to macrophages was inhibited from 33% to 50% by 100 mM ${\alpha}$-mannose. Furthermore, as results of the adhesion assays which were performed to determine whether binding of Naegleria is mediated by saccharides-binding protein, the binding ability of N. fowleri as well as N. gruberi was inhibited by 100 mM ${\alpha}$-mannose.

Macrophage-Activating Factors Produced by Murine Leukemia X Fibroblast Hybrid Cells Stimulates Resistance to Mycobacterium avium Complex

  • Kim, Tae-Sung;Cohen, Edward-P.
    • Archives of Pharmacal Research
    • /
    • v.20 no.3
    • /
    • pp.225-233
    • /
    • 1997
  • A murine leukemia x LM fibroblast hybrid cell line with immune augmenting properties stimulated resistance to Mycobacterium avium complex (MAC) in mouse peritoneal macrophages, and in immune deficient beige mice (C57BL/6/bgj/bgj). The proliferation of MAC in mouse peritoneal macrophages was inhibited by medium conditioned by the growth of the hybrid cells (hybrid cell-CM). Under similar circumstances, media conditioned by the growth of LM cells (LM cell-CM), a mouse fibroblast cell line used as one parent in forming the hybrid cell, was exhibited no inhibitory effect. Treatment of mouse peritoneal macrophages with hybrid cell-CM, but not with LM cell-CM, stimulated the expression of each of four previously described macrophage activation antigens, suggesting that the hybrid cells formed immunomodulators in addition to those formed by LM cells. Furthermore, the morphology of the macrophages following treatment with hybrid cell-CM was clearly distinguishable from that following exposure of the cells to LM cell-CM. The therapeutic effects of hybrid cells on the progression of MAC-infection were indicated by the prolonged survival of MAC-infected immune-deficient beige mice. One hundred percent of treated animals survived more than 60 days, while untreated animals died in approximately 22 days.

  • PDF

Effects of the Combined Extracts of Glycine Max Merr. and Glycyrrhiza Uralensis on the Activity of Murine Splenocytes and Macrophages (흑대두.감초 혼합추출물이 생쥐의 비장세포 및 대식세포의 활성에 미치는 영향)

  • Seo, Seung-Yong;Pang, Jinye;Li, Ri-Hua;Kwon, Jin;Ahn, Mun-Saeng;Eun, Jae-Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.6
    • /
    • pp.1385-1391
    • /
    • 2009
  • The purpose of this research was to investigate the effects of the extracts of Glycyrrhiza uralensis (GE) and the combined extracts of Glycine max Merr. and Glycyrrhiza uralensis (GGE) on the activity of murine splenocytes and macrophages. GE and GGE were administered orally twice a day for 7 days at the dose of 500 mg/kg. GE decreased the viability of T- and B-lymphocytes in splenocytes, but GGE increased the viability of B-lymphocytes in splenocytes. GE increased the population of B-lymphocytes in splenocytes, but decreased the population of T-lymphocytes and splenic $CD4^+$ cells. Also, GGE decreased the population of B-lymphocytes in splenocytes, but increased the population of T-lymphocytes and splenic $CD4^+$ cells. Furthermore, GE and GGE enhanced the phagocytic activity of peritoneal macrophages and the production of nitric oxide. These results suggest that the regulative action of immune response of GGE is more potent than their of GE.

Anti-inflammatory Effects of Saussurea Lappa Extracts in Murine Macrophages (설치류 대식세포에서 목향(木香) 추출물의 항염증 효과)

  • Lee, Min-Suk;Ryu, Do-Gon;Kwon, Kang-Beom
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.275-279
    • /
    • 2011
  • In order to validate the use of Saussurea Lappa as an anti-inflammatory drug in the traditional Korean medicine, I have investigated the effects of water-soluble extract of Saussurea Lappa (ESL) on the production of pro-inflammatory tumor necrosis factor-alpha (TNF-${\alpha}$) in murine RAW 264.7 macrophages stimulated with the endotoxin lipopolysaccharide (LPS). The extract inhibited dose-dependently TNF-${\alpha}$ production without its cytotoxic effect on the macrophages, as measured by enzyme-linked immunosorbent assay, and significantly decreased mRNA levels of TNF-${\alpha}$, as determined using reverse transcription polymerase chain reaction. The extract also inhibited LPS-induced activation of nuclear factor-${\kappa}B$, thereby resulting in TNF-${\alpha}$ gene expression. These results suggest that ESL may have therapeutic potential in the control of inflammatory diseases mediated by activated macrophages.

Studies on the Regulation of Nitric oxide Synthesis in Murine Mononuclear Phagocytes (마우스 단핵 탐식 세포에서 Nitric oxide 생성의 조절 기전에 관한 연구)

  • 최병기;김수응
    • Environmental Analysis Health and Toxicology
    • /
    • v.15 no.3
    • /
    • pp.69-80
    • /
    • 2000
  • ADP-rubosylation may be involved in the process of macrophage activation. Nitric oxide (NO) has emerged as an important intracellular and interacellular regulatory molecule with function as diverse as vasodilation, neural communication or host defense. NO is derived from the oxidation of the terminal guanidino nitrogen atom of L-arginine by the NADPH -dependent enzyme, nitric oxide synthase (NOS) which is one of the three different isomers in mammalian tissues. Since NO can exert protective or regulatory functions in the cell at a low concentration while toxic effects at higher concentrations, its role may be tightly regulated in the cell. Therefore, this paper was focused on signal transduction pathway of NO synthesis, role of endogenous TGF-$\beta$ in NO production. effect of NO on superoxide formation. Costimulation of murine peritoneal macrophages with interferon-gamma (IFN-γ) and phorbol 12-myristate 13-acetate (PMA) increased both NO secretion and mRNA expression of inducible nitric oxide synthase (iNOS) when PMA abolished costimulation. Pretreatmnet of the cells with PMA abolished costimuation effects due to the depletion of protein kinase C (PKC) activities . The involvement of PKC in NO secretion could be further confirmed by PKC inhibitor, stauroprine, and phorbol ester derivative, phorbol 12,13-didecanoate. Addition of actinomycine D in IFN-γ plus PMA stimulated cells inhibited both NO secretion and mRNA expression of iNOS indication that PMA stabilizes mRNA of iNOS . Exogenous TGF-$\beta$ reduced NO secretion in IFN -γ stimulated murine macrophages. However addition of antisense oligodeoxynucleotide (ODN) to TGF-$\beta$ to this system recovered the ability of NO production and inhibited mRNA expression of TGF-$\beta$. ACAS interactive laser cytometry analysis showed that transportation of FITC -labeled antisense ODN complementary to TGF-$\beta$ mRNA could be observed within 5 min and reached maximal intensity in 30 min in the murine macrophage cells. NO released by activated macrophages inhibits superoxide formation in the same cells . This inhibition nay be related on NO-induced auto -adenosine diphosphate (ADP) -ribosylation . In addition, ADP-ribosylation may be involved in the process of macrophage activation .

  • PDF

Immunosuppressive Effect of Prodigiosin on Murine Splenocyte and Macrophages

  • Huh, Jung-Eun;Koo, Hyun-Jung;Kim, Kyung-Ho;Yim, Joung-Han;Lee, Hong-Kum;Sohn, Eun-Wha;Pyo, Suhk-Neung
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.351-355
    • /
    • 2008
  • Prodigiosin was isolated from marine bacteria Hahella chejuensis which has been recently discovered from Marado, Cheju Island, Republic of Korea. Immunosuppressive properties have been reported for prodigiosin members such as undecylprodigiosin, metacycloprodigiosin, prodigiosin, and its synthetic analogue PNU156804 (PNU). However, the effect of this agent on the function of macrophage and splenocyte has not been characterized in detail. In the present study, we examined the effects of prodigiosin for its ability to alter the function of murine macrophage and NK cell, and the proliferation of splenocytes. When thioglycollate-elicited macrophages pre-exposed to prodigiosin (1-50 ng/ml) were stimulated with LPS/IFN-$\gamma$, pretreatment with prodigiosin resulted in the inhibition of tumoricidal activity of macrophage in a concentration-dependent manner. Tumoricidal activity of NK cell was also inhibited by prodigiosin. Moreover, we found that prodigiosin was able to cause a dose-dependent inhibition of murine lymphocyte responsiveness to Con A and LPS although T-mitogenic response was the more sensitive one. Taken together, the present results point out that prodigiosin has a suppressive effect on the mitogen-induced proliferation of murine lymphocytes and the function of macrophage and NK cell.

DOWN REGULATION OF TGF-$\beta$ GENE EXPRESSION BY ANTISENSE OLIGO-DEOXYNUCLEOTIDES INCREASE rIFN-${\gamma}$-INDUCED NITRIC OXIDE SYNTHESIS IN MURINE PERITONEAL MACROPHAGES

  • Jun, Chang-Duk;Kim, Su-Ung;Lee, Seong-Yong;Chung, Hun-Taeg
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.78-78
    • /
    • 1995
  • Increasing evidence indicates that the production of nitric oxide (NO) by inducible NO synthase (NOS) is tightely regulated. Transforming growth factor-${\beta}$ (TGF-${\beta}$) is a homodimeric protein secreted during macrophage activation, but several lines of evidence suggest that TGF-${\beta}$ is selectively suppressive for macrophage NO production. We therefore reasoned that a strategy employing oligodeoxynucleotides(ODNs) complemently to TGF-${\beta}$ mRNA (antisense ODNs) might increase NO production in IFN-${\gamma}$-treated murine peritoneal macrophages. To evaluate this concept, we tested the effects of antisense ODNs targeted to TGF-${\beta}$ mRNA (25-mer ODNs complemently to TGF-${\beta}$mRNA sequences) by introducing it into the medium of cultured macrophages. Phosphorothiolation of ODNs were employed to retard their degradation. Antisense ODNs had no effect on NO production by itself, whereas IFN-${\gamma}$ alone had modest effect. When antisense ODNs were used in combination with IFN-${\gamma}$, there was a marked cooperative induction of NO production, These effects of antisense ODNs were associated with decreased TGF-${\beta}$ expression in activated macrophages. ODNs with the same nucleotides but a scrambled sequence had no effect. Adding anti-TGF-${\beta}$ antibodies to the IFN-${\gamma}$-treated macrophages mimicked the positive effect of antisense ODNs on NO production. In addition, the effects of either antisense ODNs or anti-TGF-${\beta}$ antibodies were blocked by adding TGF-${\beta}$ in cultured macrophages. These results indicate that the generation of TGF-${\beta}$ by activated macrophages provides a self-regulating mechanism by which the temporal and perhaps spatial production of NO, a reactive and potentially toxic mediator, can be finely regulated.

  • PDF