• 제목/요약/키워드: municipal waste landfill

검색결과 125건 처리시간 0.023초

D시 생활폐기물 관리 방법과 온실가스 배출량과 감축량 산정 연구 (A Study of Estimation of Greenhouse Gas Emission and Reduction by Municipal Solid Waste (MSW) Management)

  • 윤현명;장윤;장용철
    • 한국폐기물자원순환학회지
    • /
    • 제35권7호
    • /
    • pp.606-615
    • /
    • 2018
  • Over the past two decades, the options for solid waste management have been changing from land disposal to recycling, waste-to-energy, and incineration due to growing attention for resource and energy recovery. In addition, the reduction of greenhouse gas (GHG) emission has become an issue of concern in the waste sector because such gases often released into the atmosphere during the waste management processes (e.g., biodegradation in landfills and combustion by incineration) can contribute to climate change. In this study, the emission and reduction rates of GHGs by the municipal solid waste (MSW) management options in D city have been studied for the years 1996-2016. The emissions and reduction rates were calculated according to the Intergovernmental Panel on Climate Change guidelines and the EU Prognos method, respectively. A dramatic decrease in the waste landfilled was observed between 1996 and 2004, after which its amount has been relatively constant. Waste recycling and incineration have been increased over the decades, leading to a peak in the GHG emissions from landfills of approximately $63,323tCO_2\;eq/yr$ in 2005, while the lowest value of $35,962tCO_2\;eq/yr$ was observed in 2016. In 2016, the estimated emission rate of GHGs from incineration was $59,199tCO_2\;eq/yr$. The reduction rate by material recycling was the highest ($-164,487tCO_2\;eq/yr$) in 2016, followed by the rates by heat recovery with incineration ($-59,242tCO_2\;eq/yr$) and landfill gas recovery ($-23,922tCO_2\;eq/yr$). Moreover, the cumulative GHG reduction rate between 1996 and 2016 was $-3.46MtCO_2\;eq$, implying a very positive impact on future $CO_2$ reduction achieved by waste recycling as well as heat recovery of incineration and landfill gas recovery. This study clearly demonstrates that improved MSW management systems are positive for GHGs reduction and energy savings. These results could help the waste management decision-makers supporting the MSW recycling and energy recovery policies as well as the climate change mitigation efforts at local government level.

Modeling of coupled THMC processes in porous media

  • Kowalsky, Ursula;Bente, Sonja;Dinkler, Dieter
    • Coupled systems mechanics
    • /
    • 제3권1호
    • /
    • pp.27-52
    • /
    • 2014
  • For landfill monitoring and aftercare, long-term prognoses of emission and deformation behaviour are required. Landfills may be considered as heterogeneous porous soil-like structures, in which flow and transport processes of gases and liquids interact with local material degradation and mechanical deformation of the solid skeleton. Therefore, in the framework of continuous porous media mechanics a model is developed that permits the investigation of coupled mechanical, hydraulical and biochemical processes in municipal solid waste landfills.

경남국립공원지역 폐기물의 성상 및 물리·화학적 특성연구 (The Composition and Physico-chemical Characteristics of Municipal Solid Waste in National park area of Kyungnam-do)

  • 이건주
    • 유기물자원화
    • /
    • 제14권3호
    • /
    • pp.138-147
    • /
    • 2006
  • 본 연구에서는 경상남도 국립공원지역의 도시 생활 쓰레기의 성상 및 물리 화학적 조성을 조사하였다. 생활 쓰레기와 슬러지 처리 시설 설치 및 분석자료 를 확보 및 매립장 관리차원에서 본 연구는 필수적 인 것이다. 생활 쓰레기는 34.62%의 음식물류, 36.05% 의 종이류, 15.37%의 플라스틱류및 비닐류, 2.28%의 섬유류, 3.33%의 모재류 0.49%의 고무 및 가죽류 등으로 구성되어 있다. 생활쓰레기의 대부분은 음시물, 종이류, 플라스틱류 등으로 이루어져 있으며 90% 정도가 가연 성분이다. 삼성분 분석에서는 29.84%의 수분 및 62.30%의 가연분 그리고 7.86%의 회분으로 이루어져 있다. 원소분석결과는 탄소 산소 수소순으로 이루어져 있으며, 생활쓰레기의 저위 발열량은 2377.8kcal/kg 이고 슬러지의 저위 발열량은 338.06kcal/kg 임을 구할 수 있었다.

  • PDF

쓰레기 매립처분의 재검토 (Looking back on Waste Land Fill)

  • 김경호
    • 환경위생공학
    • /
    • 제3권2호
    • /
    • pp.79-90
    • /
    • 1988
  • Untill to-day the disposal of municipal refuse in Korea is entirely depending on dumping the refuse into concave land except a few case that bring about the secondary pollution by generating insects, offensive odour and the dust blow which cause adverse effects to dwelling community in the vicinity. It is widely recognized since Korea is ready to be advanced nation must be carried out the proper way of refuse disposal as meet with the environmental standard and ready to accept by general public. Refuse disposal that is practiced by world wide is known as sanitary landfill although it bears some what the expensive construction and operation costs rather than the plain dumping. The following statement is the construction of sanitary landfill in brief. When one takes a look at the Unites States which has huge territory normaly carry out the refuse disposal by anaerobic improved landfill method while the country has limitted land is experimenting various types of landfill which bring about the earier reuse of completed landfill site and minimise the secondary pollution. The author of this article consider out of several landfill methods the semi aerobic landfill will be widely applied in Korea in coming day, the following article will elaborate little more about the semi aerobic method.

  • PDF

분말활성탄 접촉-응집에 의한 생활폐기물 및 산업폐기물 매립지 침출수의 처리 (Treatment of Leachate from Municipal Landfill and Industrial Landfill by PAC Adsorption-Coagulation)

  • 김수영;장덕;김영태
    • 상하수도학회지
    • /
    • 제11권4호
    • /
    • pp.110-117
    • /
    • 1997
  • Performances of combined adsorption and coagulation were evaluated as one of the options for pre-treatment or post-treatment of MSW landfills leachate and industrial landfill leachate. The COD and color removals of leachate from an old MSW landfill were 35% and 33% at an alum dose of 300mg/L with preceding PAC(powdered activated carbon) dose of 200mg/L, respectively. The COD and color removals of leachate from an young MSW landfill were 58% and 25% at an alum dose of 700mg/L and PAC dose of 500mg/L, respectively. The COD and color of biologically treated leachate from an industrial waste landfill were removed up to 32% and 68%, respectively, with pH control at addition of 500mgAlum/L and 1,000mgPAC/L. Adsorption and coagulation process with pH control showed better COD and color removals than the process without pH control for biologically treated leachate from an industrial waste landfill. The color removal was influenced greatly by pH control, while COD removal was not significant. No difference in removal efficiency was observed between adsorption-coagulation and coagulation-adsorption process. The COD removal was accomplished mainly by adsorption, while coagulation was a key mechanism of color removal. However, the mechanism of COD removal was obscure, when BOD/COD ratio was high. Maximum net increases in COD and color removals by the adsorption-coagulation process were respectively 45% and 46% compared with the unit process of adsorption or coagulation, although those removals depended on leachate characteristics. Thus, adsorption-coagulation process was considered to be effective for pre- and post-treatment of landfill leachate, and has distinct features of simple, flexible, stable and reliable operation against fluctuation leachate quality and flowrate.

  • PDF

The impact of municipal waste disposal of heavy metals on environmental pollution: A case study for Tonekabon, Iran

  • Azizpour, Aziz;Azarafza, Mohammad;Akgun, Haluk
    • Advances in environmental research
    • /
    • 제9권3호
    • /
    • pp.175-189
    • /
    • 2020
  • Municipal solid waste disposal is considered as one of the most important risks for environmental contamination which necessitates the development of strategies to reduce destructive consequences on the ecosystem as related especially to heavy metal accumulation. This study investigates heavy metal (i.e., As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn) accumulation in the Tonekabon region, NW of Iran that is related to city waste disposal and evaluates the environmental impact in the Caspian Sea coastal region. For this purpose, after performing field studies and collecting 50 soil specimens from 5 sites of the study area, geochemical tests (i.e., inductively coupled plasma mass spectrometry, atomic absorption spectroscopy and x-ray fluorescence) were conducted on the soil specimens collected from the 5 sites (named as Sites A1, A2, A3, A4 and A5) and the results were used to estimate the pollution indices (i.e., geo-accumulation index, normalized enrichment factor, contamination factor, and pollution load index). The obtained indices were utilized to assess the eco-toxicological risk level in the landfill site which indicated that the city has been severely contaminated by Cu, Mn, Ni, Pb and Zn. These levels have been developed along the stream towards the nearshore areas indicating uptake of soil degradation. The heavy metal contamination was classified to range from unpolluted to highly polluted, which indicated serious heavy metal pollution in the study area as related to municipal solid waste disposal in Tonekabon.

쓰레기 매립지 침출수에 관한 연구 (Studies on the Leachate in Landfill Site)

  • 나규환;이장훈
    • Environmental Analysis Health and Toxicology
    • /
    • 제7권3_4호
    • /
    • pp.81-84
    • /
    • 1992
  • Physical compositions of solid waste in Wonju, shopping area were investigated with combustibles 78.13% (papers 35.89%, foods 14.41% etc.) incombustibles 21.87% (glass and ceramics 11.02%, metals 6.0% etc.) in 1991, solid waste in apartment area were investigated with combustibles 84.27% (foods 34.29%, papers 22.58% etc.), incombustibles 15.73% (glass and ceramics 8.77%, metals 4.85% etc.) and residence area were characterised with combustibles 70.37% (foods 33.55% , papers 10.53% etc.) and incombustibles 29.63% (ash of briquet 17.29%, glass and ceramics 7.49% etc.). Water qualities of a leachate from municipal landfill of Wonju city were analysed pH 8.0~8.4, total suspended solid 102~140 mg/1, CN ̄ 0.003~ 0.008 mg/1, NO$_2$-N 0.108~0.294 mg/1 and phenols 0.46~1.12 mg/1. Volume of the leachate for 20% methemoglobin formation were 0.2~0.4 mg/ml in Octever, 0.3~0.4 ml/ml in December sampling, 0.2~0.3 ml/ml in St.1 and 0.4 ml/ml in St.3.

  • PDF

인천지역 비위생 매립지반의 침하특성 연구 (The Settlement Characteristics of Incheon Unsanitary Solid Waste Landfill)

  • 조석호;임주현;김학문
    • 한국지반공학회논문집
    • /
    • 제24권7호
    • /
    • pp.37-42
    • /
    • 2008
  • 인천시 소재 OO지역 비위생 매립지를 대상으로 선행하중(pre-loading) 공법에 의한 성토시 폐기물층의 침하 계측을 바탕으로 기존에 제시된 경험적 침하 모델을 적용하여 침하 모델의 적용성과 타당성을 분석하였다. 매립 연한이 20년이 지난 비위생 매립에서의 1년간의 성토기간 동안에 9개 지점의 지표면 침하판, 2개의 층별 침하계를 설치하고 약 300일간의 계측을 통해 비위생 매립지의 침하량을 측정하였다. 초기 침하 부분에서 기존의 침하 예측 모델과 본 현장의 침하량을 비교 분석한 결과 PCL(Power Creep Law)모델의 경우 실측 범위내에서 근접한 결과를 보였으나 쌍곡선(hyperbolic) 모델과 Bjarngard와 Edgers 모델의 경우 초기 실측 범위인 약 $50{\sim}70$일부터 300일까지 실측치와 근접하게 예측되었다.

도시 생활폐기물 매립지에서 발생되는 악취물질의 조성에 대한 연구 (The Composition of Odor Compounds Emitted from Municipal Solid Waste Landfill)

  • 손윤석;김조천;김기형;임보아;박강남;이우근
    • 한국대기환경학회지
    • /
    • 제23권6호
    • /
    • pp.666-674
    • /
    • 2007
  • In this study, sampling and analysis was carried out for 13 compounds, in order to investigate the odorous compound emissions from landfill stacks and surrounding ambient air. These results revealed that concentration of hydrogen sulfide was $0.13{\sim}0.66\;ppb$ in the ambient air. Also, concentrations of hydrogen sulfide ($151{\sim}358\;ppm$) were the highest value in odorous sulfur compounds from landfill stacks. In case of VOC, toluene was obtained the highest out of volatile organic compounds. It was found that the concentrations of hydrogen sulfide near the landfill was higher than that inside city such as Seoul although it was located in a rural area. The result was due to the effect of hydrogen sulfide emitted from landfill stacks.

포항 옥명 폐기물 매립지의 지하수 환경 (Groundwater Environment of the Okmyong Waste Landfill in the Pohang City)

  • 정상용;이강근
    • 대한지하수환경학회지
    • /
    • 제5권4호
    • /
    • pp.223-232
    • /
    • 1998
  • 포항 옥명 폐기물 매립지는 우리나라의 주요 산업폐기물 처리장으로서 1988년 1월부터 현재까지 약 10년동안 사용되고 있다. 매립지에서 반경 2~3 km 범위의 일반지하수는 산성비의 영향으로 pH가 약산성이며, EC, NO$_3$, SO$_4$가 보통의 지하수보다 높게 나타난다. Piper의 삼각다이아그램에서의 수질유형은 Ca-SO$_4$와 Na-SO$_4$형인데, Ca-SO$_4$형이 우세하다. 매립지내의 5개 감시정 지하수의 수질은 침출수의 영향으로 pH가 약알카리성이며, TS, COD, Na, Cl, SO$_4$, Alkalinity, F 등이 일반지하수에 비하여 많이 나타난다. Mn, Zn, Pb, Cr Ni 등의 중금속도 많이 나타나지만, 유해유기원소는 검출이 되지 않는다. 옥명 매립지 지하수의 수질유형은 Na-SO$_4$형으로서, 서울난지도, 부산석대 등의 일반 생활폐기물 매립지의 Na-Cl형과 구별된다. 현재까지 확인된 지하수 오염범위는 매립지 입구에서 서쪽으로 약 120 m 떨어진 곳이다. 앞으로 침출수들이 매립지 주변지역으로 확산되는 것을 막기 위하여는 매립지 외곽에 차수벽을 설치하고, 매립지내에는 여러개의 채수정을 개발하여 오염된 지하수들을 주기적으로 양수하여 침출수처리장에서 처리하여야 한다.

  • PDF