• Title/Summary/Keyword: multiwalled carbon nanotube

Search Result 65, Processing Time 0.026 seconds

Hybrid Nanocomposites of Palladium Nanoparticles Having POSS and MWNTs via Ionic Interactions

  • Jeon, Jong-Hwan;Lim, Jung-Hyurk;Kim, Kyung-Min
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.987-994
    • /
    • 2009
  • Palladium nanoparticles having cubic silsesquioxanes (POSS) (Pd-POSS) were produced by the reaction of palladium (II) acetate and octa(3-aminopropyl)octasilsesquioxane octahydrochloride (POSS-${NH_3}^+$ in methanol at room temperature. Functionalized multiwalled carbon nanotubes (MWNT-COOH) were prepared by acid treatment of pristine MWNTs. The hybrid nanocomposites of Pd-POSS and MWNT-COOH (Pd-MWNT nanocomposites) were synthesized by self-assembly method via ionic interaction between positively charged Pd-POSS and negatively charged MWNT-$COO^-$. The spherical aggregates of Pd-POSS with a diameter of 40-60 urn were well attached to the surfaces of MWNT-COOH on Silicon wafer. The composition, structure, and surface morphology of Pd-MWNT nanocomposites were studied by UV-vis spectrophotometer, energy dispersive spectrum (EDX), scanning electron microscopy (SEM), and atomic force microscope (AFM).

Fabrication of Carbon Nanotubes Monolayer Film using Liquid/Liquid Interface

  • Matsui, Jun;Yamamoto, Kohei;Inokuma, Nobuhiro;Orikasa, Hironori;Kyotani, Takashi;Miyashita, Tokuji
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.279-279
    • /
    • 2006
  • We report a fabrication of carbon nanotube (CNT) monolayer thin film using liquid-liquid interface. The multiwalled carbon nanotube (MWCNT), which were synthesized by the alumina template method formed a monolayer at the liquid-liquid interface after sonicating the MWCNT water-oil dispersion. Moreover, with the addition of ethanol, the MWCNT monlayer was also formed at the liquid-liquid interface. The monolayer is transferable onto solid substrates and the transferred film was observed using atomic force microscopy (AFM)

  • PDF

Improved Surface Morphologies of Printed Carbon Nanotubes by Heat Treatment and Their Field Emission Properties

  • Lee, Hyeon-Jae;Lee, Yang-Doo;Cho, Woo-Sung;Kim, Jai-Kyeong;Lee, Yun-Hi;Hwang, Sung-Woo;Ju, Byeong-Kwon
    • Journal of Information Display
    • /
    • v.7 no.2
    • /
    • pp.22-25
    • /
    • 2006
  • This paper presents heating process for obtaining standing carbon nanotube emitters to improve field-emission properties from the screen-printed multiwalled carbon nanotube (MWCNT) films. In an atmosphere with optimum combination of nitrogen and air for heat treatment of CNT films, the CNT emitters can be made to protrude from the surface. This allows for high emission current and the formation of very uniform emission sites without special surface treatment. The morphological change of the CNT film by this technique has eliminated additional processing steps, such as surface treatment which may result in secondary contamination and damage to the film. Despite its simplicity the process provides high reproducibility in emission current density which makes the films suitable for practical applications.

Electrical Property of Electrospun PCL/MWCNTs Nanofiber with Additive Silver Thin Film (은 박막이 첨가된 전기방사법으로 제작한 PCL/MWCNTs 나노섬유의 전기적 특성)

  • Kim, Jin Un;Kim, Kyong Min;Park, Kyoung Wan;Sok, Jung Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.238-243
    • /
    • 2018
  • A nanofiber was fabricated with carbon nanotubes for transparent electrodes. It was prepared with a composite solution of bio-molecules polycaprolactone (PCL) and multiwalled carbon nanotubes (MWCNTs) by electrospinning on a glass substrate, following which its electrical characteristics were investigated. The content of MWCNTs was varied during electrospinning, while that of PCL was fixed. Further, a nanometer-thick thin film of silver was deposited on the nanofiber layer using a thermal evaporator to improve the electrical characteristics; the sheet resistance significantly reduced after this deposition. The results showed that this carbon nanotube nanofiber has potential applications in biotechnology and as a flexible transparent display material.

In-situ TEM of Carbon Nanotube Field Emitters and Improvement of Electron Emission from Nanotube Films by Laser Treatment

  • Saito, Yahachi;Seko, Kazuyuki;Kinoshita, Jun-ichi;Ishida, Toshiyuki;Yotani, Junko;Kurachi, Hiroyuki;Uemura, Sashiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1081-1086
    • /
    • 2005
  • Dynamic behavior of carbon nanotubes (CNTs) in an electric field is directly observed by in-situ transmission electron microscopy (TEM). The CNT field emitters examined by in-situ TEM are multiwalled, double-walled and single walled CNTs. Threshold fields for electron emission and sustainable emission currents depending on the structure of CNTs are presented, and degradation mechanism of the CNT field emitters is discussed. In addition to the microscopy studies on individual CNTs, our recent development in surface treatment of CNT layers grown by chemical vapor deposition, which brings about high density of emission current and high uniformity, is also presented.

  • PDF

Synthesis of High Purity Multiwalled and Singlewalled Carbon Nanotubes by Arc-discharge

  • Kim, Keun-Soo;Park, Young-Soo;An, Kay-Hyeok;Jeong, Hee-Jin;Kim, Won-Seok;Choi, Young-Chul;Lee, Seung-Mi;Moon, Jeong-Mi;Chung, Dong-Chul;Bae, Dong-Jae;Lim, Seong-Chu;Lee, Young-Seak;Lee, Young-Hee
    • Carbon letters
    • /
    • v.1 no.2
    • /
    • pp.53-59
    • /
    • 2000
  • The synthetic methods for high yield of multiwalled carbon nanotube (MWNT) and singlewalled carbon nanotube (SWNT) with high purity by arc discharge have been investigated. MWNTs were synthesized under different pressures of helium and the gas mixture of argon and hydrogen. Relatively high pressure of 300-400 torr was required for high yield MWNTs synthesis at low bias voltage of about 20 V and 55 A, whereas low pressure of about 100 torr was required for SWNTs. The introduction of hydrogen gases during the synthesis of MWNTs improved the yield and purity of the samples. The SWNTs were synthesized by the assistance of a small amount of mixture of transition metals, which played as a catalyst during the formation process. The purity and yield of SWNTs were higher at a lower pressure and enhanced by mixing more components of the transition metals.

  • PDF

Fabrication Techniques for Carbon Nanotube Field Emitters by Screen Printing (스크린 프린팅법에 의한 탄소나노튜브 전계방출소자의 제조기술)

  • Yi, Mann;Son, Ji-Ha;Chu, Haang-Rhym;Jeong, Hyo-Soo;Koh, Nam-Je;Lee, Dong-Gu
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.499-507
    • /
    • 2002
  • The carbon nanotube emitters for field emission displays were fabricated by using screen printing techniques. The pastes for screen printing are composed of organic binders, carbon nanotubes (multiwalled or singlewalled), and some additive materials. The pastes were printed on Cr-coated/Ag-printed soda-lime glass substrates. From the I-V characteristics, the turn-on field of SWNT was lower than that of MWNT. The decrease in the mesh size of screen masks (i.e. increase in the opening size of the screen mesh) resulted in decreasing the turn-on field and increasing the electron emission current. When the carbon nanotubes were mixed with silver pastes, silver powders appeared to contribute to the vertically aligning of carbon nanotubes on a glass.

Effect of Sn Decorated MWCNT Particle on Microstructures and Bonding Strengths of the OSP Surface Finished FR-4 Components Assembled with Sn58%Bi Composite Solder Joints (OSP 표면처리된 FR-4 PCB기판과 Sn58%Bi 복합솔더 접합부의 미세조직 및 접합강도에 미치는 Sn-MWCNT의 영향)

  • Park, Hyun-Joon;Lee, Choong-Jae;Min, Kyung Deuk;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.163-169
    • /
    • 2019
  • Sn-Pb solder alloys in electronics rapidly has been replaced to Pb free solder alloys because of various environmental regulations such as restriction of hazardous substances directive (RoHS), European Union waste electrical, waste electrical and electronic equipment (WEEE), registration evaluation authorization and of chemicals (REACH) etc. Because Sn58%Bi (in wt.%) solder alloy has low melting point and higher mechanical properties than that of Sn-Pb solder, it has been studied to manufacture electronic components. However, the reliability of Sn58%Bi solder could be lowered because of the brittleness of Bi element included in the solder alloy. Therefore, we observed the microstructures of Sn58%Bi composite solders with various contents of Sn-decorated multiwalled carbon nanotube (Sn-MWCNT) particles and evaluated bonding strength of the FR-4 components assembled with Sn58%Bi composite solder. Also, microstructures and bonding strengths of the Sn58%Bi composite solder joints were evaluated with the number of reflows from 1 to 7 times, respectively. Bonding strengths and fracture energies of the Sn58%Bi composite solder joints were measured by die shear test. Microstructures and fracture modes were observed with scanning electron microscope (SEM). Microstructures in the Sn58%Bi composite solder joints were finer than that of only Sn58%Bi solder joint. Bonding strength and fracture energy of Sn58%Bi composite solder including 0.1 wt.% of Sn-decorated MWCNT particles increased up to 20.4% and 15.4% at 5 times in reflow, respectively.

Synthesis and Properties of Dual Structured Carbon Nanotubes (DSCNTs)

  • Cho, Se-Ho;Kim, Do-Yoon;Heo, Jeong-Ku;Lee, Young-Hee;An, Kay-Hyeok;Kim, Shin-Dong;Lee, Young-Seak
    • Carbon letters
    • /
    • v.7 no.4
    • /
    • pp.277-281
    • /
    • 2006
  • In this study, in order to easily provide functional groups on the surface of carbon nanotubes, dual structural multiwalled carbon nanotubes which have crystalline graphite and turbostratic carbon wall were synthesized by modified vertical thermal decomposition method. Synthesized dual structural MWCNTs were characterized by FE-SEM, TGA, HR-TEM, Raman spectroscopy and BET specific surface area analyzer. The average innermost and outermost diameters of the synthesized nanotubes were around 45 and 75 nm, respectively. The large empty inner space and the presence of graphitic carbons on the surface may open potential applications for gas storage and collection of hazardous materials.

  • PDF