• Title/Summary/Keyword: multivariate modeling

Search Result 115, Processing Time 0.027 seconds

Multivariate Process Capability Index Using Inverted Normal Loss Function (역정규 손실함수를 이용한 다변량 공정능력지수)

  • Moon, Hye-Jin;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.2
    • /
    • pp.174-183
    • /
    • 2018
  • In the industrial fields, the process capability index has been using to evaluate the variation of quality in the process. The traditional process capability indices such as $C_p$, $C_{pk}$, $C_{pm}$ and $C^+_{pm}$ have been applied in the industrial fields. These traditional process capability indices are mainly applied in the univariate analysis. However, the main streams in the recent industry are the multivariate manufacturing process and the multiple quality characteristics are corrected each other. Therefore, the multivariate statistical method should be used in the process capability analysis. The multivariate process indices need to be enhanced with more useful information and extensive application in the recent industrial fields. Hence, the purpose of the study is to develop a more effective multivariate process index ($MC_{pI}$) using the multivariate inverted normal loss function. The multivariate inverted normal loss function has the flexibility for the any type of the symmetrical and asymmetrical loss functions as well as the economic information. Especially, the proposed modeling method for the multivariate inverted normal loss function (MINLF) and the expected loss from MINLF in this paper can be applied to the any type of the symmetrical and asymmetrical loss functions. And this modeling method can be easily expanded from a bivariate case to a multivariate case.

Multivariate Time Series Simulation With Component Analysis (독립성분분석을 이용한 다변량 시계열 모의)

  • Lee, Tae-Sam;Salas, Jose D.;Karvanen, Juha;Noh, Jae-Kyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.694-698
    • /
    • 2008
  • In hydrology, it is a difficult task to deal with multivariate time series such as modeling streamflows of an entire complex river system. Normal distribution based model such as MARMA (Multivariate Autorgressive Moving average) has been a major approach for modeling the multivariate time series. There are some limitations for the normal based models. One of them might be the unfavorable data-transformation forcing that the data follow the normal distribution. Furthermore, the high dimension multivariate model requires the very large parameter matrix. As an alternative, one might be decomposing the multivariate data into independent components and modeling it individually. In 1985, Lins used Principal Component Analysis (PCA). The five scores, the decomposed data from the original data, were taken and were formulated individually. The one of the five scores were modeled with AR-2 while the others are modeled with AR-1 model. From the time series analysis using the scores of the five components, he noted "principal component time series might provide a relatively simple and meaningful alternative to conventional large MARMA models". This study is inspired from the researcher's quote to develop a multivariate simulation model. The multivariate simulation model is suggested here using Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Three modeling step is applied for simulation. (1) PCA is used to decompose the correlated multivariate data into the uncorrelated data while ICA decomposes the data into independent components. Here, the autocorrelation structure of the decomposed data is still dominant, which is inherited from the data of the original domain. (2) Each component is resampled by block bootstrapping or K-nearest neighbor. (3) The resampled components bring back to original domain. From using the suggested approach one might expect that a) the simulated data are different with the historical data, b) no data transformation is required (in case of ICA), c) a complex system can be decomposed into independent component and modeled individually. The model with PCA and ICA are compared with the various statistics such as the basic statistics (mean, standard deviation, skewness, autocorrelation), and reservoir-related statistics, kernel density estimate.

  • PDF

A rolling analysis on the prediction of value at risk with multivariate GARCH and copula

  • Bai, Yang;Dang, Yibo;Park, Cheolwoo;Lee, Taewook
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.6
    • /
    • pp.605-618
    • /
    • 2018
  • Risk management has been a crucial part of the daily operations of the financial industry over the past two decades. Value at Risk (VaR), a quantitative measure introduced by JP Morgan in 1995, is the most popular and simplest quantitative measure of risk. VaR has been widely applied to the risk evaluation over all types of financial activities, including portfolio management and asset allocation. This paper uses the implementations of multivariate GARCH models and copula methods to illustrate the performance of a one-day-ahead VaR prediction modeling process for high-dimensional portfolios. Many factors, such as the interaction among included assets, are included in the modeling process. Additionally, empirical data analyses and backtesting results are demonstrated through a rolling analysis, which help capture the instability of parameter estimates. We find that our way of modeling is relatively robust and flexible.

Analysis of Multivariate-GARCH via DCC Modelling (DCC 모델링을 이용한 다변량-GARCH 모형의 분석 및 응용)

  • Choi, S.M.;Hong, S.Y.;Choi, M.S.;Park, J.A.;Baek, J.S.;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.5
    • /
    • pp.995-1005
    • /
    • 2009
  • Conditional correlation between financial time series plays an important role in risk management, asset allocation and portfolio selection and therefore diverse efforts for modeling conditional correlations in multivariate-GARCH processes have been made in last two decades. In particular, CCC (cf. Bollerslev, 1990) and DCC(dynamic conditional correlation, cf. Engle, 2002) models have been commonly used since they are relatively parsimonious in the number of parameters involved. This article is concerned with DCC modeling for multivariate GARCH processes in comparison with CCC specification. Various multivariate financial time series are analysed to illustrate possible advantages of DCC over CCC modeling.

Nonlinear structural modeling using multivariate adaptive regression splines

  • Zhang, Wengang;Goh, A.T.C.
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.569-585
    • /
    • 2015
  • Various computational tools are available for modeling highly nonlinear structural engineering problems that lack a precise analytical theory or understanding of the phenomena involved. This paper adopts a fairly simple nonparametric adaptive regression algorithm known as multivariate adaptive regression splines (MARS) to model the nonlinear interactions between variables. The MARS method makes no specific assumptions about the underlying functional relationship between the input variables and the response. Details of MARS methodology and its associated procedures are introduced first, followed by a number of examples including three practical structural engineering problems. These examples indicate that accuracy of the MARS prediction approach. Additionally, MARS is able to assess the relative importance of the designed variables. As MARS explicitly defines the intervals for the input variables, the model enables engineers to have an insight and understanding of where significant changes in the data may occur. An example is also presented to demonstrate how the MARS developed model can be used to carry out structural reliability analysis.

Bayesian Analysis of a New Skewed Multivariate Probit for Correlated Binary Response Data

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.4
    • /
    • pp.613-635
    • /
    • 2001
  • This paper proposes a skewed multivariate probit model for analyzing a correlated binary response data with covariates. The proposed model is formulated by introducing an asymmetric link based upon a skewed multivariate normal distribution. The model connected to the asymmetric multivariate link, allows for flexible modeling of the correlation structure among binary responses and straightforward interpretation of the parameters. However, complex likelihood function of the model prevents us from fitting and analyzing the model analytically. Simulation-based Bayesian inference methodologies are provided to overcome the problem. We examine the suggested methods through two data sets in order to demonstrate their performances.

  • PDF

Prediction of ultimate load capacity of concrete-filled steel tube columns using multivariate adaptive regression splines (MARS)

  • Avci-Karatas, Cigdem
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.583-594
    • /
    • 2019
  • In the areas highly exposed to earthquakes, concrete-filled steel tube columns (CFSTCs) are known to provide superior structural aspects such as (i) high strength for good seismic performance (ii) high ductility (iii) enhanced energy absorption (iv) confining pressure to concrete, (v) high section modulus, etc. Numerous studies were reported on behavior of CFSTCs under axial compression loadings. This paper presents an analytical model to predict ultimate load capacity of CFSTCs with circular sections under axial load by using multivariate adaptive regression splines (MARS). MARS is a nonlinear and non-parametric regression methodology. After careful study of literature, 150 comprehensive experimental data presented in the previous studies were examined to prepare a data set and the dependent variables such as geometrical and mechanical properties of circular CFST system have been identified. Basically, MARS model establishes a relation between predictors and dependent variables. Separate regression lines can be formed through the concept of divide and conquers strategy. About 70% of the consolidated data has been used for development of model and the rest of the data has been used for validation of the model. Proper care has been taken such that the input data consists of all ranges of variables. From the studies, it is noted that the predicted ultimate axial load capacity of CFSTCs is found to match with the corresponding experimental observations of literature.

A Multivariate Model Development for Strem Flow Generation

  • Jeong, Sang-Man
    • Korean Journal of Hydrosciences
    • /
    • v.3
    • /
    • pp.105-113
    • /
    • 1992
  • Various modeling approaches to study a long term behavior of streamflow or groundwater storage have been conducted. In this study, a Multivariate AR (1) Model has been applied to generate monthly flows of the one key station which has historical flows using monthly flows of the three subordinate stations. The Model performance was examined using statistical comparisons between the historical and generated monthly series such as mean, variance, skewness. Also, the correlation coefficients (lag-zero, and lag-one) between the two monthly flows were compared. The results showed that the modeled generated flows were statistically similar to the historical flows.

  • PDF

PROCESS ANALYSIS OF AUTOMOTIVE PARTS USING GRAPHICAL MODELLING

  • IRIKURA Norio;KUZUYA Kazuyoshi;NISHINA Ken
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.295-300
    • /
    • 1998
  • Recently graphical modelling is being studied as a useful process analysis tool for exploratory causal analysis. Graphical modelling is a presentation method that uses graphs to describe statistical models of the structures of multivariate data. This paper describes an application of this graphical modeling with two cases from the automotive parts industry. One case is the unbalance problem of the pulley, an automotive generator part. There is multivariate data of the product from each of the processes which are connected in the series. By means of exploratory causal analysis between the variables using graphical modeling, the key processes which causes the variation of the final characteristics and their mechanism of the causal relationship have become clear. Another case is, also, the unbalanced problem of automotive starter parts which consists of many parts and is manufactured by complex machinery and assembling process. By means of the similar technique, the key processes are obtained easily and the results are reasonable from technical knowledge.

  • PDF

Risk factors for unexpected readmission and reoperation following open procedures for shoulder instability: a national database study of 1,942 cases

  • John M. Tarazi;Matthew J. Partan;Alton Daley;Brandon Klein;Luke Bartlett;Randy M. Cohn
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.3
    • /
    • pp.252-259
    • /
    • 2023
  • Background: The purpose of this study was to identify demographics and risk factors associated with unplanned 30-day readmission and reoperation following open procedures for shoulder instability and examine recent trends in open shoulder instability procedures. Methods: The American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database was queried using current procedural terminology (CPT) codes 23455, 23460, and 23462 to find patients who underwent shoulder instability surgery from 2015 to 2019. Independent sample Student t-tests and chi-square tests were used in univariate analyses to identify demographic, lifestyle, and perioperative variables related to 30-day readmission following repair for shoulder instability. Multivariate logistic regression modeling was subsequently performed. Results: In total, 1,942 cases of open surgical procedures for shoulder instability were identified. Within our study sample, 1.27% of patients were readmitted within 30 days of surgery, and 0.85% required reoperation. Multivariate logistic regression modeling confirmed that the following patient variables were associated with a statistically significant increase in the odds of readmission: open anterior bone block/Latarjet-Bristow procedure, being a current smoker, and a long hospital stay (all P<0.05). Multivariate logistic regression modeling confirmed statistically significant increased odds of reoperation with an open anterior bone block or Latarjet-Bristow procedure (P<0.05). Conclusions: Unplanned 30-day readmission and reoperation after open shoulder instability surgery is infrequent. Patients who are current smokers, have an open anterior bone block or Latarjet-Bristow procedure, or a longer than average hospital stay have higher odds of readmission than others. Patients who undergo an open anterior bone block or Latarjet-Bristow procedure have higher odds of reoperation than those who undergo an open soft-tissue procedure. Level of evidence: III.