• 제목/요약/키워드: multivariable Srivastava's polynomials

검색결과 2건 처리시간 0.014초

APPLICATION OF PRODUCT OF THE MULTIVARIABLE A-FUNCTION AND THE MULTIVARIABLE SRIVASTAVA'S POLYNOMIALS

  • Kumar, Dinesh;Ayant, Frederic;Choi, Junesang
    • East Asian mathematical journal
    • /
    • 제34권3호
    • /
    • pp.295-303
    • /
    • 2018
  • Gautam et al. [9] introduced the multivariable A-function, which is very general, reduces to yield a number of special functions, in particular, the multivariable H-function. Here, first, we aim to establish two very general integral formulas involving product of the general class of Srivastava multivariable polynomials and the multivariable A-function. Then, using those integrals, we find a solution of partial differential equations of heat conduction at zero temperature with radiation at the ends in medium without source of thermal energy. The results presented here, being very general, are also pointed out to yield a number of relatively simple results, one of which is demonstrated to be connected with a known solution of the above-mentioned equation.

SOME BILATERAL GENERATING FUNCTIONS INVOLVING THE CHAN-CHYAN-SRIVASTAVA POLYNOMIALS AND SOME GENERAL CLASSES OF MULTIVARIABLE POLYNOMIALS

  • Gaboury, Sebastien;Ozarslan, Mehmet Ali;Tremblay, Richard
    • 대한수학회논문집
    • /
    • 제28권4호
    • /
    • pp.783-797
    • /
    • 2013
  • Recently, Liu et al. [Bilateral generating functions for the Chan-Chyan-Srivastava polynomials and the generalized Lauricella function, Integral Transform Spec. Funct. 23 (2012), no. 7, 539-549] investigated, in several interesting papers, some various families of bilateral generating functions involving the Chan-Chyan-Srivastava polynomials. The aim of this present paper is to obtain some bilateral generating functions involving the Chan-Chyan-Sriavastava polynomials and three general classes of multivariable polynomials introduced earlier by Srivastava in [A contour integral involving Fox's H-function, Indian J. Math. 14 (1972), 1-6], [A multilinear generating function for the Konhauser sets of biorthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math. 117 (1985), 183-191] and by Kaano$\breve{g}$lu and $\ddot{O}$zarslan in [Two-sided generating functions for certain class of r-variable polynomials, Mathematical and Computer Modelling 54 (2011), 625-631]. Special cases involving the (Srivastava-Daoust) generalized Lauricella functions are also given.