• Title/Summary/Keyword: multistory shear structure

Search Result 15, Processing Time 0.026 seconds

Damage detection of multistory shear buildings using partial modal data

  • Shah, Ankur;Vesmawala, Gaurang;Meruane, V.
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • This study implements a hybrid Genetic Algorithm to detect, locate, and quantify structural damage for multistory shear buildings using partial modal data. Measuring modal responses at multiple locations on a structure is both challenging and expensive in practice. The proposed method's objective function is based on the building's dynamic properties and can also be employed with partial modal information. This method includes initial residuals between the numerical and experimental model and a damage penalization term to avoid false damages. To test the proposed method, a numerical example of a ten-story shear building with noisy and partial modal information was explored. The obtained results were in agreement with the previously published research. The proposed method's performance was also verified using experimental modal data of an 8-DOF spring-mass system and a five-story shear building. The predicted results for numerical and experimental examples indicated that the proposed method is reliable in identifying the damage for multistory shear buildings.

Efficient models for analysis of a multistory structure with flexible wings

  • Moon, Seong-Kwon;Lee, Dong-Guen
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.465-478
    • /
    • 2002
  • This study lays emphasis on the development of efficient analytical models for a multistory structure with wings, including the in-plane deformation of floor slabs. For this purpose, a multistory structure with wings is regarded as the combination of multistory structures with rectangular plan and their junctions. In addition, a multistory structure with a rectangular plan is considered to be an assemblage of two-dimensional frames and floor slabs connecting two adjacent frames at each floor level. This modeling, concept can be easily applied to multistory structures with plans in the shape of L, T, Y, U, H, etc. To represent the in-plane deformation of floor slabs efficiently, a two-dimensional frame and the floor slab connecting two adjacent frames at each floor level are modeled as a stick model with two degrees of freedom per floor and a stiff beam with shear deformations, respectively. Three models are used to investigate the effect of in-plane deformation of the floor slab at the junction of wings on the seismic behavior of structures. Based on the comparison of dynamic analysis results obtained using the proposed models and three-dimensional finite element models, it could be concluded that the proposed models can be used as an efficient tool for an approximate analysis of a multistory structure with wings.

Lateral stability analysis of multistory buildings using the differential transform method

  • Aydin, Suleyman;Bozdogan, Kanat Burak
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.861-876
    • /
    • 2016
  • The determination of the critical buckling load of multistory structures is important since this load is used in second order analysis. It is more realistic to determine the critical buckling load of multistory structures using the whole system instead of independent elements. In this study, a method is proposed for designating the system critical buckling load of torsion-free structures of which the load-bearing system consists of frames and shear walls. In the method presented, the multistory structure is modeled in accordance with the continuous system calculation model and the differential equation governing the stability case is solved using the differential transform method (DTM). At the end of the study, an example problem is solved to show the conformity of the presented method with the finite elements method (FEM).

Influence of exterior joint effect on the inter-story pounding interaction of structures

  • Favvata, Maria J.;Karayannis, Chris G.;Liolios, Asterios A.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.113-136
    • /
    • 2009
  • The seismic induced interaction between multistory structures with unequal story heights (inter-story pounding) is studied taking into account the local response of the exterior beam-column joints. Although several parameters that influence the structural pounding have been studied sofar, the role of the joints local inelastic behaviour has not been yet investigated in the literature as key parameter for the pounding problem. Moreover, the influence of the infill panels as an additional parameter for the local damage effect of the joints on the inter-story pounding phenomenon is examined. Thirty six interaction cases between a multistory frame structure and an adjacent shorter and stiffer structure are studied for two different seismic excitations. The results are focused: (a) on the local response of the critical external column of the multistory structure that suffers the hit from the slab of the adjacent shorter structure, and (b) on the local response of the exterior beam-column joints of the multistory structure. Results of this investigation demonstrate that the possible local inelastic response of the exterior joints may be in some cases beneficial for the seismic behaviour of the critical column that suffers the impact. However, in all the examined cases the developing demands for deformation of the exterior joints are substantially increased and severe damages can be observed due to the pounding effect. The presence of the masonry infill panels has also been proved as an important parameter for the response of the exterior beam-column joints and thus for the safety of the building. Nevertheless, in all the examined inter-story pounding cases the presence of the infills was not enough for the total amelioration of the excessive demands for shear and ductility of the column that suffers the impact.

Seismic response variation of multistory base-isolated buildings applying lead rubber bearings

  • Islam, A.B.M. Saiful;Al-Kutti, Walid A.
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.495-504
    • /
    • 2018
  • The possibility of earthquakes in vulnerable regions indicates that efficient technique is required for seismic protection of buildings. During the recent decades, the concept is moving towards the insertion of base isolation on seismic prone buildings. So, investigation of structural behavior is a burning topic for buildings to be isolated in base level by bearing device. This study deals with the incorporation of base isolation system and focuses the changes of structural responses for different types of Lead Rubber Bearing (LRB) isolators. A number of sixteen model buildings have been simulated selecting twelve types of bearing systems as well as conventional fixed-base (FB) scheme. The superstructures of the high-rise buildings are represented by finite element assemblage adopting multi-degree of freedoms. Static and dynamic analyses are carried out for FB and base isolated (BI) buildings. The dynamic analysis in finite element package has been performed by the nonlinear time history analysis (THA) based on the site-specific seismic excitation and compared employing eminent earthquakes. The influence of the model type and the alteration in superstructure behavior of the isolated buildings have been duly assessed. The results of the 3D multistory structures show that the lateral forces, displacement, inertia and story accelerations of the superstructure of the seismic prone buildings are significantly reduced due to bearing insertion. The nonlinear dynamic analysis shows 12 to 40% lessening in base shear when LRB is incorporated leading to substantial allowance of horizontal displacement. It is revealed that the LRB isolators might be potential options to diminish the respective floor accelerations, inertia, displacements and base shear whatever the condition coincides. The isolators with lower force intercept but higher isolation period is found to be better for decreasing base shear, floor acceleration and inertia force leading to reduction of structural and non-structural damage. However, LRB with lower isolator period seems to be more effective in dropping displacement at bearing interface aimed at reducing horizontal shift of building structure.

Inter-story pounding between multistory reinforced concrete structures

  • Karayannis, Chris G.;Favvata, Maria J.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.505-526
    • /
    • 2005
  • The influence of the inter-story structural pounding on the seismic behaviour of adjacent multistory reinforced concrete structures with unequal total heights and different story heights is investigated. Although inter-story pounding is a common case in practice, it has not been studied before in the literature as far as the authors are aware. Fifty two pounding cases, each one for two different seismic excitations, are examined. From the results it can be deduced that: (i) The most important issue in the inter-story pounding is the local effect on the external column of the tall building that suffers the impact from the upper floor slab of the adjacent shorter structure. (ii) The ductility demands for this column are increased comparing with the ones without the pounding effect. In the cases that the two buildings are in contact these demands appear to be critical since they are higher than the available ductility values. In the cases that there is a small distance between the interacting buildings the ductility demands of this column are also higher than the ones of the same column without the pounding effect but they appear to be lower than the available ductility values. (iii) It has to be stressed that in all the examined cases the developed shear forces of this column exceeded the shear strength. Thus, it can be concluded that in inter-story pounding cases the column that suffers the impact is always in a critical condition due to shear action and, furthermore, in the cases that the two structures are in contact from the beginning this column appears to be critical due to high ductility demands as well. The consequences of the impact can be very severe for the integrity of the column and may be a primary cause for the initiation of the collapse of the structure. This means that special measures have to be taken in the design process first for the critically increased shear demands and secondly for the high ductility demands.

A Study on the Improved Seismic Analysis of Multistory Shear Wall Buildings (전단벽식 고층건물의 내진해석에 관한 연구)

  • 이준교;이근홍;이수곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.267-272
    • /
    • 1993
  • Currently about 60 contries in the world require earthquake resistant structural design in case of multistory building constructions. In these cases the equivalent lateral force procedure is commonly adopted because of its simplicity and convenience. This procedure, however, is developed based mainly on the first vibration mode response of building structure. The dynamic analysis of tall building shows that the effect of higher modes of vibration on the response of the building can not be neglected. In this paper, the effect of higher modes of vibration on seismic response is evaluated through modal analysis of tall building structures. On the basis of evaluation results, an improved procedure is to be proposed for the extended application of the equivalent lateral force procedure.

  • PDF

Resilient structures in the seismic retrofitting of RC frames: A case study

  • Pallares, Francisco J.;Dominguez, David;Pallares, Luis
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.57-65
    • /
    • 2020
  • It is very important to allocate valuable resources efficiently when reconstructing buildings after earthquake damage. This paper proposes the use of a simple seismic retrofitting system to make buildings more resilient than the stiffer systems such as the shear walls implemented in Chile after the earthquake in 2010. The proposal is based on the use of steel chevron-type braces in RC buildings as a dual system to improve the seismic performance of multistory buildings. A case study was carried out to compare the proposal with the shear wall solution for the typical seismic Chilean RC building from the structural and economic perspectives. The results show that it is more resilient than other stiffer seismic solutions, such as shear walls, reduces the demand, minimizes seismic damage, gives reliable earthquake protection and facilitates future upgrades and repairs while achieving the level of immediate occupancy without the costs of the shear walls system.

A method for dynamic analysis of frame-hinged shear wall structures

  • Bozdogan, Kanat Burak;Ozturk, Duygu
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.45-61
    • /
    • 2016
  • Structures with soft story irregularity have been seriously damaged in earthquakes. Therefore, the analysis of dynamic behavior of structures with soft story irregularity is of great value and relevance. In this study, a certain method will be used to discover the displacements and internal forces and to find out results about soft story irregularity. For this study, the multi-story frame-hinged shear wall system has been used as a model according to the continuous calculation system. The dynamic characteristics of the system have been obtained by analyzing the governing differential equation of the system. The dynamic characteristics have been calculated for a practical and quick analysis as indicated in tables. The suggested method is wholly based on manual calculation. A spectral analysis can be easily conducted with the help of Tables provided by this study. A sample has been solved and compared to the finite elements method to study the suitability of the method suggested at the end of this study.

Numerical Study on Seismic Behavior of a Three-Story RC Shear Wall Structure (3층 전단벽 구조물의 지진응답에 관한 수치해석)

  • Park, Dawon;Choi, Youngjun;Hong, Jung-Wuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.111-119
    • /
    • 2021
  • A shear wall is a structural member designed to effectively resist in-plane lateral forces, such as strong winds and earthquakes. Due to its efficiency and stability, shear walls are often installed in residential buildings and essential facilities such as nuclear power plants. In this research, to predict the results of the shaking table test of the three-story shear wall RC structure hosted by the Korea Atomic Energy Research Institute, three types of numerical modeling techniques are proposed: Preliminary, Calibrated 1, and Calibrated 2 models, in order of improvement. For the proposed models, an earthquake of the 2016 Gyeongju, South Korea (peak ground acceleration of 0.28 g) and its amplified earthquake (peak ground acceleration of 0.50 g) are input. The response spectra of the measuring points are obtained by numerical analysis. Good agreement is observed in the comparisons between the experiment results and the simulation conducted on the finally adopted numerical model, Calibrated 2. In the process of improving the model, this paper investigates the influences of the mode shape, material properties, and boundary conditions on the structure's seismic behavior.