• Title/Summary/Keyword: multiscale methods

Search Result 78, Processing Time 0.023 seconds

Eigenvalue Analysis of a Membrane Using the Multiscale Adaptive Wavelet-Galerkin Method (멀티스케일 적응 웨이블렛-갤러킨 기법을 이용한 박막 고유치 문제 해석)

  • Yi, Yong-Sub;Kim, Yoon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.251-258
    • /
    • 2004
  • Since the multiscale wavelet-based numerical methods allow effective adaptive analysis, they have become new analysis tools. However, the main applications of these methods have been mainly on elliptic problems, they are rarely used for eigenvalue analysis. The objective of this paper is to develop a new multiscale wavelet-based adaptive Galerkin method for eigenvalue analysis. To this end, we employ the hat interpolation wavelets as the basis functions of the finite-dimensional trial function space and formulate a multiresolution analysis approach using the multiscale wavelet-Galerkin method. It is then shown that this multiresolution formulation makes iterative eigensolvers very efficient. The intrinsic difference-checking nature of wavelets is shown to play a critical role in the adaptive analysis. The effectiveness of the present approach will be examined in terms of the total numbers of required nodes and CPU times.

Analysis of Tubular Structures in Medical Imaging

  • Kim, Jin-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.4
    • /
    • pp.545-550
    • /
    • 2009
  • A method fully utilizing multiscale line filter responses is presented to estimate the point spread function(PSF) of a CT scanner and diameters of small tubular structures based on the PSF. The estimation problem is formulated as a least square fitting of a sequence of multiscale responses obtained at each medical axis point to the precomputed multiscale response curve for the ideal line model. The method was validated through phantom experiments and demonstrated through phantom experiments and demonstrated to accurately measure small-diameter structures which are significantly overestimated by conventional methods based on the full width half maximum(FWHM) and zero-crossing edge detection.

Comparison of multiscale multiple change-points estimators (SMUCE와 FDR segmentation 방법에 의한 다중변화점 추정법 비교)

  • Kim, Jaehee
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.4
    • /
    • pp.561-572
    • /
    • 2019
  • We study false discovery rate segmentation (FDRSeg) and simultaneous multiscale change-point estimator (SMUCE) methods for multiscale multiple change-point estimation, and compare empirical behavior via simulation. FSRSeg is based on the control of a false discovery rate while SMUCE used for the multiscale local likelihood ratio tests. FDRSeg seems to work best if the number of change-points is large; however, FDRSeg and SMUCE methods can both provide similar estimation results when there are only a small number of change-points. As a real data application, multiple change-points estimation is done with the well-log data.

Implementation Strategy for the Numerical Efficiency Improvement of the Multiscale Interpolation Wavelet-Galerkin Method

  • Seo Jeong Hun;Earmme Taemin;Jang Gang-Won;Kim Yoon Young
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.110-124
    • /
    • 2006
  • The multi scale wavelet-Galerkin method implemented in an adaptive manner has an advantage of obtaining accurate solutions with a substantially reduced number of interpolation points. The method is becoming popular, but its numerical efficiency still needs improvement. The objectives of this investigation are to present a new numerical scheme to improve the performance of the multi scale adaptive wavelet-Galerkin method and to give detailed implementation procedure. Specifically, the subdomain technique suitable for multiscale methods is developed and implemented. When the standard wavelet-Galerkin method is implemented without domain subdivision, the interaction between very long scale wavelets and very short scale wavelets leads to a poorly-sparse system matrix, which considerably worsens numerical efficiency for large-sized problems. The performance of the developed strategy is checked in terms of numerical costs such as the CPU time and memory size. Since the detailed implementation procedure including preprocessing and stiffness matrix construction is given, researchers having experiences in standard finite element implementation may be able to extend the multi scale method further or utilize some features of the multiscale method in their own applications.

Multiscale analysis using a coupled discrete/finite element model

  • Rojek, Jerzy;Onate, Eugenio
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.1-31
    • /
    • 2008
  • The present paper presents multiscale modelling via coupling of the discrete and finite element methods. Theoretical formulation of the discrete element method using spherical or cylindrical particles has been briefly reviewed. Basic equations of the finite element method using the explicit time integration have been given. The micr-macro transition for the discrete element method has been discussed. Theoretical formulations for macroscopic stress and strain tensors have been given. Determination of macroscopic constitutive properties using dimensionless micro-macro relationships has been proposed. The formulation of the multiscale DEM/FEM model employing the DEM and FEM in different subdomains of the same body has been presented. The coupling allows the use of partially overlapping DEM and FEM subdomains. The overlap zone in the two coupling algorithms is introduced in order to provide a smooth transition from one discretization method to the other. Coupling between the DEM and FEM subdomains is provided by additional kinematic constraints imposed by means of either the Lagrange multipliers or penalty function method. The coupled DEM/FEM formulation has been implemented in the authors' own numerical program. Good performance of the numerical algorithms has been demonstrated in a number of examples.

SOME RECENT TOPICS IN COMPUTATIONAL MATHEMATICS - FINITE ELEMENT METHODS

  • Park, Eun-Jae
    • Korean Journal of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.127-137
    • /
    • 2005
  • The objective of numerical analysis is to devise and analyze efficient algorithms or numerical methods for equations arising in mathematical modeling for science and engineering. In this article, we present some recent topics in computational mathematics, specially in the finite element method and overview the development of the mixed finite element method in the context of second order elliptic and parabolic problems. Multiscale methods such as MsFEM, HMM, and VMsM are included.

  • PDF

How to identify fake images? : Multiscale methods vs. Sherlock Holmes

  • Park, Minsu;Park, Minjeong;Kim, Donghoh;Lee, Hajeong;Oh, Hee-Seok
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.6
    • /
    • pp.583-594
    • /
    • 2021
  • In this paper, we propose wavelet-based procedures to identify the difference between images, including portraits and handwriting. The proposed methods are based on a novel combination of multiscale methods with a regularization technique. The multiscale method extracts the local characteristics of an image, and the distinct features are obtained through the regularized regression of the local characteristics. The regularized regression approach copes with the high-dimensional problem to build the relation between the local characteristics. Lytle and Yang (2006) introduced the detection method of forged handwriting via wavelets and summary statistics. We expand the scope of their method to the general image and significantly improve the results. We demonstrate the promising empirical evidence of the proposed method through various experiments.

Hierarchical multiscale modeling for predicting the physicochemical characteristics of construction materials: A review

  • Jin-Ho Bae;Taegeon Kil;Giljae Cho;Jeong Gook Jang;Beomjoo Yang
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.325-340
    • /
    • 2024
  • The growing demands for sustainable and high-performance construction materials necessitate a deep understanding of their physicochemical properties by that of these heterogeneities. This paper presents a comprehensive review of the state-of-the-art hierarchical multiscale modeling approach aimed at predicting the intricate physicochemical characteristics of construction materials. Emphasizing the heterogeneity inherent in these materials, the review briefly introduces single-scale analyses, including the ab initio method, molecular dynamics, and micromechanics, through a scale-bridging technique. Herein, the limitations of these models are also overviewed by that of effectively scale-bridging methods of length or time scales. The hierarchical multiscale model demonstrates these physicochemical properties considering chemical reactions, material defects from nano to macro scale, microscopic properties, and their influence on macroscopic events. Thereby, hierarchical multiscale modeling can facilitate the efficient design and development of next-generation construction.

Perceptual Fusion of Infrared and Visible Image through Variational Multiscale with Guide Filtering

  • Feng, Xin;Hu, Kaiqun
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1296-1305
    • /
    • 2019
  • To solve the problem of poor noise suppression capability and frequent loss of edge contour and detailed information in current fusion methods, an infrared and visible light image fusion method based on variational multiscale decomposition is proposed. Firstly, the fused images are separately processed through variational multiscale decomposition to obtain texture components and structural components. The method of guided filter is used to carry out the fusion of the texture components of the fused image. In the structural component fusion, a method is proposed to measure the fused weights with phase consistency, sharpness, and brightness comprehensive information. Finally, the texture components of the two images are fused. The structure components are added to obtain the final fused image. The experimental results show that the proposed method displays very good noise robustness, and it also helps realize better fusion quality.

Multiscale Simulation of Yield Strength in Reduced-Activation Ferritic/Martensitic Steel

  • Wang, Chenchong;Zhang, Chi;Yang, Zhigang;Zhao, Jijun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.569-575
    • /
    • 2017
  • One of the important requirements for the application of reduced-activation ferritic/martensitic (RAFM) steel is to retain proper mechanical properties under irradiation and high-temperature conditions. To simulate the yield strength and stress-strain curve of steels during high-temperature and irradiation conditions, a multiscale simulation method consisting of both microstructure and strengthening simulations was established. The simulation results of microstructure parameters were added to a superposition strengthening model, which consisted of constitutive models of different strengthening methods. Based on the simulation results, the strength contribution for different strengthening methods at both room temperature and high-temperature conditions was analyzed. The simulation results of the yield strength in irradiation and high-temperature conditions were mainly consistent with the experimental results. The optimal application field of this multiscale model was 9Cr series (7-9 wt.%Cr) RAFM steels in a condition characterized by 0.1-5 dpa (or 0 dpa) and a temperature range of $25-500^{\circ}C$.