• Title/Summary/Keyword: multiplex RT-PCR

Search Result 80, Processing Time 0.031 seconds

Forensic Body Fluid Identification by Analysis of Multiple RNA Markers Using NanoString Technology

  • Park, Jong-Lyul;Park, Seong-Min;Kim, Jeong-Hwan;Lee, Han-Chul;Lee, Seung-Hwan;Woo, Kwang-Man;Kim, Seon-Young
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.277-281
    • /
    • 2013
  • RNA analysis has become a reliable method of body fluid identification for forensic use. Previously, we developed a combination of four multiplex quantitative PCR (qRT-PCR) probes to discriminate four different body fluids (blood, semen, saliva, and vaginal secretion). While those makers successfully identified most body fluid samples, there were some cases of false positive and negative identification. To improve the accuracy of the identification further, we tried to use multiple markers per body fluid and adopted the NanoString nCounter system instead of a multiplex qRT-PCR system. After measuring tens of RNA markers, we evaluated the accuracy of each marker for body fluid identification. For body fluids, such as blood and semen, each body fluid-specific marker was accurate enough for perfect identification. However, for saliva and vaginal secretion, no single marker was perfect. Thus, we designed a logistic regression model with multiple markers for saliva and vaginal secretion and achieved almost perfect identification. In conclusion, the NanoString nCounter is an efficient platform for measuring multiple RNA markers per body fluid and will be useful for forensic RNA analysis.

Human coronavirus infection in hospitalized children with community-acquired pneumonia (입원한 폐렴 환아에서 코로나 바이러스 감염)

  • Chung, Ju-Young;Han, Tae Hee;Kim, Sang Woo;Koo, Ja Wook;Hwang, Eung-Soo
    • Pediatric Infection and Vaccine
    • /
    • v.14 no.1
    • /
    • pp.69-74
    • /
    • 2007
  • Purpose : Human coronanviruses (hCovs) including hCoV-229E and hCoV-OC43 have been known as etiologic agents of the common colds and were regarded as clinically insignificant agents. However, recent identification of hCoV-NL63 and hCoV-HKU1 in children with lower respiratory tract infections has evoked the clinical concerns about their prevalence and the clinical significance of these hCoVs in children. This study was performed to investigate the prevalence of hCoVs in children with community-acquired pneumonia. Methods : From March 2006 to January 2007, nasopharyngeal specimens collected from children hospitalized with pneumonia, were tested for the presence of common respiratory viruses (respiratory syncytial virus, influenza A, influenza B, parainfluenza viruses, and adenovirus) using multiplex reverse transcriptase polymerase chain reaction (RT-PCR). Human metapneumovirus (hMPV) infection was excluded by nested RT-PCR using primers for the F-gene. To detect the different strains of hCoVs, nested RT-PCR assays specific for hCoVNL63, hCoV-OC43, hCoV-229E, and hCoV-HKU1 were performed. Results : Out of the 217 nasopharyngeal aspirate from children aged under 15 years, respiratory syncytial virus (RSV) was detected in 32 patients, hMPV in 18, human parainfluenza virus in 10, influenza virus A in 2, and adenovirus in 6. HCoVs were detected by RT-PCR in 8 (3.7%) of the 217 patients, hCoV-229E in 1, hCoV-NL63 in 3, and hCoVOC43 in 4 patients. HCoV-HKU1 was not detected in this study population. Conclusion : Recently identified hCoV-NL63 and hCoV-HKU1 seemed to have a little clinical significance in Korean children with severe or hospitalized community-acquired pneumonia.

  • PDF

Detection of HER2 Status in Breast Cancer: Comparison of Current Methods with MLPA and Real-time RT-PCR

  • Pazhoomand, Reza;Keyhan, Elahe;Banan, Mehdi;Najmabad, Hossein;Karimlou, Masoud;Khodadad, Faranak;Iraniparast, Alireza;Feiz, Farnaz;Majidzadeh, Keivan;Bahman, Ideh;Moghadam, Fatemeh Aghakhani;Sobhani, Atoosa Madadkar;Abedin, Seyedeh Sedigheh;Muhammadnejad, Ahad;Behjat, Farkhondeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7621-7628
    • /
    • 2013
  • Human epidermal growth factor receptor (HER) status is an important prognostic factor in breast cancer. There is no globally accepted method for determining its status, and which method is most precise is still a matter of debate. We here analyzed HER2 mRNA expression by quantitative reverse transcription-PCR (qRT-PCR) and HER2 DNA amplification using multiplex ligation-dependent probe amplification (MLPA). In parallel, we performed a routine evaluation of HER2 protein by immunohistochemistry (IHC). To assess the accuracy of the RT-PCR and MLPA techniques, a combination of IHC and fluorescence in situ hybridization (FISH) was used, substituting FISH when the results of IHC were ambiguous (2+) and for those IHC results that disagreed with MLPA and qRT-PCR, this approach being termed IHC-FISH. The IHC results for four samples were not compatible with the MLPA and qRT-PCR results; the MLPA and qRT-PCR results for these samples were confirmed by FISH. The correlations between IHC-FISH and qRT-PCR or MLPA were 0.945 and 0.973, respectively. The ASCO/CAP guideline IHC/FISH correlation with MLPA was (0.827) and with RT-PCR was (0.854). The correlations between the IHC results (0, 1+ as negative, and 3+ as positive) and qRT-PCR and MLPA techniques were 0.743 and 0.831, respectively. Given the shortcomings of IHC analysis and greater correlations between MLPA, qRT-PCR, and FISH methods than IHC analysis alone with each of these three methods, we propose that MLPA and real-time PCR are good alternatives to IHC. However a suitable cut-off point for qRTPCR is a prerequisite for determining the exact status of HER2.

Utilization of qPCR Technology in Water Treatment (수질분석에 사용되는 qPCR기술)

  • Kim, Won Jae;Hwang, Yunjung;Lee, Minhye;Chung, Minsub
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.235-241
    • /
    • 2022
  • According to the World Water Development Report 2015 released by the United Nations, drinking water is expected to decrease by 40% by 2030. This does not mean that the amount of water decreases, but rather that the water source is contaminated due to environmental pollution. Because microbes are deeply related to water quality, the analysis of microbe is very important for water quality management. While the most common method currently used for microbial analysis is microscopic examination of the shape and feature after cell culture, as the gene analysis technology advances, quantitative polymerase chain reaction (qPCR) can be applied to the microscopic microbiological analysis, and the application method has been studied. Among them, a reverse transcription (RT) step enables the analysis of RNA by RT-PCR. Integrated cell culture (ICC)-qPCR shortens the test time by using it with microbial culture analysis, and viability qPCR can reduce the false positive errors of samples collected from natural water source. Multiplex qPCR for improved throughput, and microfluidic qPCR for analysis with limited amount of sample has been developed In this paper, we introduce the case, principle and development direction of the qPCR method applied to the analysis of microorganisms.

Detection of Enteropathogens in Human Immunodeficiency Virus and Non-Human Immunodeficiency Virus-Infected Children with Acute Diarrhea in an Indonesian Tertiary Hospital Using Multiplex Real-Time Polymerase Chain Reaction

  • Dewi Wulandari;Rivaldi Febrian;Pramita Gayatri Dwipoerwantoro;Nia Kurniati
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.27 no.2
    • /
    • pp.95-103
    • /
    • 2024
  • Purpose: Diarrhea is one of the leading causes of mortality in children living in developing countries. The etiology of acute diarrhea in each healthcare center varies depending on place, time, and population. This study aimed to identify pathogen patterns in human immunodeficiency virus (HIV)-infected and non-HIV children suffering from acute diarrhea, using multiplex real time reverse transcriptase polymerase chain reaction (RT-PCR), in an Indonesian tertiary hospital. Methods: This cross-sectional study was conducted at Dr. Cipto Mangunkusumo National Hospital from March 2019 to April 2020. Results: The study showed that multiplex RT-PCR results were positive in 58.9% of the specimens, with more positive results in HIV-infected children than in non-HIV-infected children (70% vs. 54.7%). Altogether 72 enteropathogens were detected from all specimens. Enteropathogens in non-HIV children with acute diarrhea consisted of bacteria (70.6%) and viruses (29.4%) with a predominance of enteroaggregative Escherichia coli (25.4%), followed by Campylobacter spp. (11.8%), enteropathogenic E. coli (9.8%), Norovirus GII (7.8%), and Clostridium difficile (7.8%). Enteropathogens in HIV-infected children consisted of viruses (57.1%), bacteria (28.6%), and parasites (14.3%) comprising Norovirus GII (24%), Cryptosporidium spp. (14.3%), Campylobacter spp. (14.3%), Norovirus GI (14.3%), and Astrovirus (14.3%). Cryptosporidium spp. was the only parasite found in this study and was found only in HIV-infected children. In non-HIV children with acute diarrhea, most pathogens were invasive bacteria, while in HIV-infected children, more viral and parasite infections occurred, primarily caused by opportunistic pathogens. Conclusion: The pattern of enteropathogens can help clinicians determine further examinations and appropriate empirical antimicrobial therapy for the patient.

Reverse Transcription Polymerase Chain Reaction-based System for Simultaneous Detection of Multiple Lily-infecting Viruses

  • Kwon, Ji Yeon;Ryu, Ki Hyun;Choi, Sun Hee
    • The Plant Pathology Journal
    • /
    • v.29 no.3
    • /
    • pp.338-343
    • /
    • 2013
  • A detection system based on a multiplex reverse transcription (RT) polymerase chain reaction (PCR) was developed to simultaneously identify multiple viruses in the lily plant. The most common viruses infecting lily plants are the cucumber mosaic virus (CMV), lily mottle virus (LMoV), lily symptomless virus (LSV). Leaf samples were collected at lily-cultivation facilities located in the Kangwon province of Korea and used to evaluate the detection system. Simplex and multiplex RT-PCR were performed using virus-specific primers to detect single- or mixed viral infections in lily plants. Our results demonstrate the selective detection of 3 different viruses (CMV, LMoV and LSV) by using specific primers as well as the potential of simultaneously detecting 2 or 3 different viruses in lily plants with mixed infections. Three sets of primers for each target virus, and one set of internal control primers were used to evaluate the detection system for efficiency, reliability, and reproducibility.

Pathogenicity of new reassortant betanodaviruses to various juvenile fishes (새로운 betanodavirus 재편성체(reassortant)의 어류 치어에 대한 병원성 분석)

  • Kim, Young Chul;Jeong, Hyun Do
    • Journal of fish pathology
    • /
    • v.34 no.2
    • /
    • pp.133-140
    • /
    • 2021
  • With the recent isolation of a new betanodavirus in shellfish, Korean Shellfish Nervous Necrosis Virus (KSNNV), it has also been identified the reassortant KSNNV of two RNA segments, in which one segment is KSNNV genotype but the other one is known genotype. In this study, we confirmed that the ressortant KSNNVs obtained in previous screening study of our laboratory for betanodaviruses in shellfish were KS/RGNNV and RG/KSNNV type by performing two consecutive multiplex RT-PCR on each RNA1 and RNA2 segment (R1- and R2-discriminative multiplex two-step RT-PCR, respectively) to determine the genotype of each segment based on the size of amplicon. In the pathogenicity analysis, none of the reassortants induced specific external symptoms or mortality of VNN, but viruses of 2 × 104~105 copies/mg or more were detected at 14 days after injection (107 copies/fish) in brain tissues of 4 species except for crucian carp and common carp among the 6 species of juvenile fish used. In addition, the histopathological features of weak but distinct vacuole formation were also found in the brain of these infected fish, but no difference was found between the two reassortants KS/RGNNV-KG and RG/KSNNV-CM.

Epidemiology of Respiratory Viral Infection using Multiplex RT-PCR in Cheonan, Korea (2006-2010)

  • Kim, Jae Kyung;Jeon, Jae-Sik;Kim, Jong Wan;Rheem, Insoo
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.267-273
    • /
    • 2013
  • Multiplex RT-PCR was used to detect respiratory viruses in 5,318 clinical samples referred to the laboratory of a tertiary teaching hospital from December 2006 to November 2010. The acquired data were analyzed with respect to types, ratio, and co-infection trends of infected respiratory viruses. Trends in respiratory viral infection according to sex, age, and period of infection were also analyzed. Of the 5,318 submitted clinical samples, 3,350 (63.0%) specimens were positive for at least one respiratory virus. The infection rates were 15.8% for human rhinovirus, 14.4% for human respiratory syncytial virus A, 9.7% for human respiratory syncytial virus B, 10.1% for human adenovirus, 5.4% for influenza A virus, 1.7% for influenza B virus, 4.7% for human metapneumovirus, 2.3% for human coronavirus OC43, 1.9% for human coronavirus 229E/NL63, 3.7% for human parainfluenza virus (HPIV)-1, 1.1% for HPIV-2, and 5.3% for HPIV-3. The co-infection analysis showed 17.1% of double infections, 1.8% of triple infections. The median age of virus-positive patients was 1.3 years old, and the 91.5% of virus-positive patients were under 10 years old. Human respiratory syncytial virus was the most common virus in children < 5 years of age and the influenza A virus was most prevalent virus in children over 5 years of age. These results help in elucidating the tendency of respiratory viral infections.

Occurrence of Apple stem grooving virus in commercial apple seedlings and analysis of its coat protein sequence

  • Han, Jae-Yeong;Park, Chan-Hwan;Seo, Eun-Yeong;Kim, Jung-Kyu;Hammond, John;Lim, Hyoun-Sub
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • Apple stem grooving virus (ASGV), Apple chlorotic leaf spot virus (ACLSV), and Apple stem pitting virus (ASPV) have been known to induce top working disease causing economical damage in apple. Occurrences of these three viruses in pome fruit trees, including apple, have been reported around the world. The transmission of the three viruses was reported by grafting, and there was no report of transmission through mechanical contact, insect vector, or seed except some herbaceous hosts of ASGV. As RNA extraction methods for fruit trees, Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) and multiplex RT-PCR techniques have been improved for reliability and stability, and low titer viruses that could not be detected in the past have become detectable. We studied the seed transmission ability of three apple viruses through apple seedling diagnosis using RT-PCR. Nineteen seeds obtained from commercially grown apple were germinated and two of the resulting plants were ASGV positive. Seven clones of the amplified ASGV coat protein (CP) genes of these isolates were sequenced. Overall sequence identities were 99.84% (nucleotide) and 99.76% (amino acid). Presence of a previously unreported single nucleotide and amino acid variation conserved in all of these clones suggests a possible association with seed transmission of these 'S' isolates. A phylogenetic tree constructed using ASGV CP nucleotide sequences showed that isolate S sequences were grouped with Korean, Chinese, Indian isolates from apple and Indian isolates from kiwi.

Detection rate and clinical impact of respiratory viruses in children with Kawasaki disease

  • Kim, Ja Hye;Yu, Jeong Jin;Lee, Jina;Kim, Mi-Na;Ko, Hong Ki;Choi, Hyung Soon;Kim, Young-Hwue;Ko, Jae-Kon
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.12
    • /
    • pp.470-473
    • /
    • 2012
  • Purpose: The purpose of this prospective case-control study was to survey the detection rate of respiratory viruses in children with Kawasaki disease (KD) by using multiplex reverse transcriptase-polymerase chain reaction (RT-PCR), and to investigate the clinical implications of the prevalence of respiratory viruses during the acute phase of KD. Methods: RT-PCR assays were carried out to screen for the presence of respiratory syncytial virus A and B, adenovirus, rhinovirus, parainfluenza viruses 1 to 4, influenza virus A and B, metapneumovirus, bocavirus, coronavirus OC43/229E and NL63, and enterovirus in nasopharyngeal secretions of 55 KD patients and 78 control subjects. Results: Virus detection rates in KD patients and control subjects were 32.7% and 30.8%, respectively (P=0.811). However, there was no significant association between the presence of any of the 15 viruses and the incidence of KD. Comparisons between the 18 patients with positive RT-PCR results and the other 37 KD patients revealed no significant differences in terms of clinical findings (including the prevalence of incomplete presentation of the disease) and coronary artery diameter. Conclusion: A positive RT-PCR for currently epidemic respiratory viruses should not be used as an evidence against the diagnosis of KD. These viruses were not associated with the incomplete presentation of KD and coronary artery dilatation.