• Title/Summary/Keyword: multiple-input-multiple-output

Search Result 1,139, Processing Time 0.023 seconds

Spatial Multiuser Access for Reverse Link of Multiuser MIMO Systems

  • Shin, Oh-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10A
    • /
    • pp.980-986
    • /
    • 2008
  • Spatial multiuser access is investigated for the reverse link of multiuser multiple-input multiple-output (MIMO) systems. In particular, we consider two alternative a aches to spatial multiuser access that adopt the same detection algorithm at the base station: one is a closed-loop approach based on singular value decomposition (SVD) of the channel matrix, whereas the other is an open-loop approach based in space-time block coding (STBC). We develop multiuser detection algorithms for these two spatial multiuser access schemes based on the minimum mean square error (MMSE) criterion. Then, we compare the bit error rate (BER) performance of the two schemes and a single-user MIMO scheme. Interestingly, it is found that the STBC approach can provide much better BER performance than the SVD approach as well as than a single-user MIMO scheme.

Before/After Precoding Massive MIMO Systems for Cloud Radio Access Networks

  • Park, Sangkyu;Chae, Chan-Byoung;Bahk, Saewoong
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.398-406
    • /
    • 2013
  • In this paper, we investigate two types of in-phase and quadrature-phase (IQ) data transfer methods for cloud multiple-input multiple-output (MIMO) network operation. They are termed "after-precoding" and "before-precoding". We formulate a cloud massive MIMO operation problem that aims at selecting the best IQ data transfer method and transmission strategy (beamforming technique, the number of concurrently receiving users, the number of used antennas for transmission) to maximize the ergodic sum-rate under a limited capacity of the digital unit-radio unit link. Based on our proposed solution, the optimal numbers of users and antennas are simultaneously chosen. Numerical results confirm that the sum-rate gain is greater when adaptive "after/before-precoding" method is available than when only conventional "after-precoding" IQ-data transfer is available.

Efficient Near-Optimal Detection with Generalized Sphere Decoder for Blind MU-MIMO Systems

  • Kim, Minjoon;Park, Jangyong;Kim, Hyunsub;Kim, Jaeseok
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.682-685
    • /
    • 2014
  • In this letter, we propose an efficient near-optimal detection scheme (that makes use of a generalized sphere decoder (GSD)) for blind multi-user multiple-input multiple-output (MU-MIMO) systems. In practical MU-MIMO systems, a receiver suffers from interference because the precoding matrix, the result of the precoding technique used, is quantized with limited feedback and is thus imperfect. The proposed scheme can achieve near-optimal performance with low complexity by using a GSD to detect several additional interference signals. In addition, the proposed scheme is suitable for use in blind systems.

Performance Analysis of Layer Pruning on Sphere Decoding in MIMO Systems

  • Karthikeyan, Madurakavi;Saraswady, D.
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.564-571
    • /
    • 2014
  • Sphere decoding (SD) for multiple-input and multiple-output systems is a well-recognized approach for achieving near-maximum likelihood performance with reduced complexity. SD is a tree search process, whereby a large number of nodes can be searched in an effort to find an estimation of a transmitted symbol vector. In this paper, a simple and generalized approach called layer pruning is proposed to achieve complexity reduction in SD. Pruning a layer from a search process reduces the total number of nodes in a sphere search. The symbols corresponding to the pruned layer are obtained by adopting a QRM-MLD receiver. Simulation results show that the proposed method reduces the number of nodes to be searched for decoding the transmitted symbols by maintaining negligible performance loss. The proposed technique reduces the complexity by 35% to 42% in the low and medium signal-to-noise ratio regime. To demonstrate the potential of our method, we compare the results with another well-known method - namely, probabilistic tree pruning SD.

MIMO Precoding in 802.16e WiMAX

  • Li, Qinghua;Lin, Xintian Eddie;Zhang, Jianzhong (Charlie)
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.141-149
    • /
    • 2007
  • Multiple-input multiple-output (MIMO) transmit pre-coding/beamforming can significantly improve system spectral efficiency. However, several obstacles prevent precoding from wide deployment in early wireless networks: The significant feedback overhead, performance degradation due to feedback delay, and the large storage requirement at the mobile devices. In this paper, we propose a precoding method that addresses these issues. In this approach, only 3 or 6 bits feedback is needed to select a precoding matrix from a codebook. There are fifteen codebooks, each corresponding to a unique combination of antenna configuration (up to 4 antennas) and codebook size. Small codebooks are prestored and large codebooks are efficiently computed from the prestored codebook, modified Hochwald method and Householder reflection. Finally, the feedback delay is compensated by channel prediction. The scheme is validated by simulations and we have observed significant gains comparing to space-time coding and antenna selection. This solution was adopted as a part of the IEEE 802.16e specification in 2005.

Optimal Bit Allocation Adaptive Modulation Algorithm for MIMO System

  • Fan, Lingyan;He, Chen;Feng, Guorui
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.136-140
    • /
    • 2007
  • In this paper, an adaptive minimum transmit power modulation scheme under constant data rate and fixed bit error rate (BER) for the multiple-input multiple-output (MIMO) system is proposed. It adjusts the modulation order and allocates the transmit power to each spatial sub-channel when meeting the user's requirements at the cost of minimum transmission power. Compared to the other algorithm, it can obtain good performance with lower computational complexity and can be applied to the wireless communication system. Computer simulation results present the efficiency of the proposed scheme. And its performance under different channel condition has been compared with the other algorithm.

Energy Efficiency of Distributed Massive MIMO Systems

  • He, Chunlong;Yin, Jiajia;He, Yejun;Huang, Min;Zhao, Bo
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.649-657
    • /
    • 2016
  • In this paper, we investigate energy efficiency (EE) of the traditional co-located and the distributed massive multiple-input multiple-output (MIMO) systems. First, we derive an approximate EE expression for both the idealistic and the realistic power consumption models. Then an optimal energy-efficient remote access unit (RAU) selection algorithm based on the distance between the mobile stations (MSs) and the RAUs are developed to maximize the EE for the downlink distributed massive MIMO systems under the realistic power consumption model. Numerical results show that the EE of the distributed massive MIMO systems is larger than the co-located massive MIMO systems under both the idealistic and realistic power consumption models, and the optimal EE can be obtained by the developed energy-efficient RAU selection algorithm.

A Packet Detection Algorithm for IEEE802.11n System (IEEE802.11n 시스템에 적용 가능한 패킷 검출 알고리즘)

  • Jung, Hyeok-Koo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4C
    • /
    • pp.330-335
    • /
    • 2008
  • This paper proposes a packet detection algorithm for IEEE802.11n system. IEEE802.11n is a multiple input multiple output (MIMO) system and we have to consider several combining techniques which are used in multiple receive antenna system. In this paper, we propose a hybrid packet detection algorithm which combines double sliding window algorithm or delay and correlation algorithm, that is used in single input single output (SISO) system, and multiple receive antenna combining algorithms, and simulated their performances in Iin system environments and shows the results.

Spatial Multiplexing Receivers in UWB MIMO Systems based on Prerake Combining

  • An, Jin-Young;Kim, Sang-Choon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.385-390
    • /
    • 2011
  • In this paper, various ultra-wideband (UWB) spatial multiplxing (SM) multiple input multiple output (MIMO) receivers based on a prerake diversity combining scheme are discussed and their performance is analyzed. Several UWB MIMO detection approaches such as zero forcing (ZF), minimum mean square error (MMSE), ordered successive interference cancellation (OSIC), sorted QR decomposition (SQRD), and maximum likelihood (ML) are considered in order to cope with inter-channel interference. The UWB SM systems based on transmitter-side multipath preprocessing and receiver-side MIMO detection can either boost the transmission data rate or offer significant diversity gain and improved BER performance. The error performance and complexity of linear and nonlinear detection algorithms are comparatively studied on a lognormal multipath fading channel.

A Joint Channel Estimation and Data Detection for a MIMO Wireless Communication System via Sphere Decoding

  • Patil, Gajanan R.;Kokate, Vishwanath K.
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.1029-1042
    • /
    • 2017
  • A joint channel estimation and data detection technique for a multiple input multiple output (MIMO) wireless communication system is proposed. It combines the least square (LS) training based channel estimation (TBCE) scheme with sphere decoding. In this new approach, channel estimation is enhanced with the help of blind symbols, which are selected based on their correctness. The correctness is determined via sphere decoding. The performance of the new scheme is studied through simulation in terms of the bit error rate (BER). The results show that the proposed channel estimation has comparable performance and better computational complexity over the existing semi-blind channel estimation (SBCE) method.