• 제목/요약/키워드: multiple-RAT

검색결과 178건 처리시간 0.03초

Insulin-like growth factor가 소장 점막 세포 증식에 미치는 영향

  • 윤정한
    • 한국영양학회:학술대회논문집
    • /
    • 한국영양학회 1995년도 추계학술대회 초록
    • /
    • pp.11-34
    • /
    • 1995
  • Growth hormone (GH) plays a key role in regulating postnatal growth and can stimulate growth of animals by acting directly on specific receptors on the plasma membrane of tissues or indirectly through stimulating insulin-like growth factor (IGF)-I synthesis and secretion by the liver and other tissues. IGF-I and IGF-Ⅱ are polypeptides with structural similarity with proinsulin that stimulate cell proliferation by endocrine, paracrine and autocrine mechanisms. The initial event in the metabolic action of IGFs on target cells appears to be their binding to specific receptors on the plasma membrane. Current evidence indicates that the mitogenic actions of both IGFs are mediated primarily by binding to the type I IGF receptors, and that IGF action is also mediated by interactions with IGF-binding proteins (IGFBPs). Six distinct IGFBPs have been identified that are characterized by cell-specific interaction, transcriptional and post-translational regulation by many different effectors, and the ability to either potentiate or inhibit IGF actions. Nutritional deficiencies can have their devastating consequence during growth. Although IGF-I is the major mediator of GH's action on somatic growth, nutritional status of an organism is a critical regulator of IGF-I and IGFBPs. Various nutrient deficiencies result in decreased serum IGF-I levels and altered IGFBP levels, but the blood levels of GH are generally unchanged or elevated in malnutrition. Effects of protein, energy, vitamin C and D, and zinc on serum IGF and IGFBP levels and tissue mRNA levels were reviewed in the text. Multiple factors are involved in the regulation of intestinal epithelial cell growth and differentiation. Among these factors the nutritional status of individuals is the most important. The intestinal epithelium is an important site for mitogenic action of the IGFs in vivo, with exogenous IGF-I stimulating mucosal hyperplasia. Therefore, the IGF system appears to provide and important mechanism linking nutrition and the proliferation of intestinal epithelial cells. In order to study the detailed mechanisms by which intestinal mucosa is regulated, we have utilized IEC-6 cells, an intestinal epithelial cell line and Caco-2 cells, a human colon adenocarcinoma cell line. Like intestinal crypt cells analyzed in vivo or freshly isolated intestinal epithelial cells, IEC-6 cells and Caco-2 cells possess abundant quatities of both type Ⅰ and type Ⅱ IGF receptors. Exogenous IGFs stimulate, whereas addition of IGFBP-2 inhibits IEC-6 cell proliferation. To investigate whether endogenously secreted IGFBP-2 inhibit proliferation, IEC-6 cells were transfected with a full-length rat IGFBP-2 cDNA anti-sense expression construct. IEC-6 cells transfected with anti-sense IGFBP-2 protein in medium. These cells grew at a rate faster than the control cells indicating that endogenous IGFBP-2 inhibits proliferation of IEC-6 cells, probably by sequestering IGFs. IEC-6 cells express many characteristics of enterocyte, but do not undergo differentiation. On the other hand, Caco-2 cells undergo a spontaneous enterocyte differentiation. On the other hand, Caco-2 cells undergo a spontaneous enterocyte differentiation after reaching confluency. We have demonstrated that Caco-2 cells produce IGF-Ⅱ, IGFBP-2, IGFBP-3, and an as yet unidentified 31,000 Mr IGFBP, and that both mRNA and peptide secretion of IGFBP-2 and IGFBP-3 increased, but IGFBP-4 mRNA and protein secretion decreased after the cells reached confluency. These changes occurred in parallel to and were coincident with differentiation of the cells, as measured by expression of sucrase-isomaltase. In addition, Caco-2 cell clones forced to overexpress IGFBP-4 by transfection with a rat IGFBP-4 cDNA construct exhibited a significantly slower growth rate under serum-free conditions and had increased expression of sucrase-isomaltase compared with vector control cells. These results indicate that IGFBP-4 inhibits proliferation and stimulates differentiation of Caco-2 cells, probably by inhibiting the mitogenic actions of IGFs.

  • PDF

아드리아마이신으로 유도된 심근증에서 Metalloproteinase, Metalloproteinase 조직억제자, Cytokine 유전자 발현에 대한 연구 (Gene Expression of Metalloproteinases, Tissue Inhibitors of Metalloproteinases and Cytokines in Adriamycin-induced Cardiomyopathy)

  • 홍영미
    • Clinical and Experimental Pediatrics
    • /
    • 제48권2호
    • /
    • pp.197-203
    • /
    • 2005
  • 목 적 : MMP 활동의 변화는 류마치스 관절염과 암 전위를 비롯한 여러 질환에서 보고되고 있다. 최근에 확장성 심근증에서 MMP 활동의 증가가 발표되었다. 아드리아마이신으로 유도된 심근증에서 MMP에 대한 보고는 없는 실정이다. 아드리아마이신으로 유도된 심근증에서 MMP, TIMP 유전자 발현을 연구하고 cytokine과의 관련성을 알아보고자 본 연구를 실시하였다. 방 법 : Sprague Dawley 쥐에 아드리아마이신 5 mg/kg을 1주일에 2번씩 2주간(누적 용량 : 20 mg/kg) 복강내 주사하였고, 정상쥐를 대조군으로 하였다. 2주 후에 쥐를 희생시켜서 혈청과 심장조직을 얻었다. 혈청에서 ELISA 원리로 MMP-2, TIMP-3, IL-6, TNF-${\alpha}$를 측정하였다. 심장에서 total RNA를 추출하였고, MMP-2, TIMP-3 IL-6, TNF-${\alpha}$ primer를 이용하여 PCR로 증폭하였다. 증폭된 DNA는 1% agarose gel에서 전기 영동하였고 UV light 아래에서 필름으로 촬영하였다. 결 과 : 혈청 MMP-2와 TIMP-3는 두 군 간에 유의한 차이가 없었다. 아드리아마이신군에서 IL-6은 $36.8{\pm}2.8pg/mL$, TNF-${\alpha}$$2.2{\pm}2.7pg/mL$로 정상군에 비해 유의한 증가를 보였다. 혈청 MMP-2와 TNF-${\alpha}$와는 r=0.41로 유의한 상관관계가 있었다. 심근 조직에서 MMP-2, IL-6, TNF-${\alpha}$는 발현되지 않았고, TIMP-3는 아드리아마이신군에서 대조군에 비해 유전자 발현이 감소되었다. 결 론 : 아드리아마이신으로 유도된 급성 심근증 모델에서는 심근에서 MMP, IL-6, TNF-${\alpha}$가 발현되지 않았고, TIMP 발현이 감소함을 알 수 있었다. 혈청 MMP와 TNF-${\alpha}$와의 상관성이 유의하게 높았으므로 TNF-${\alpha}$가 MMP 발현을 조절함을 시사해 준다. 앞으로 만성 심근증 모델에서 MMP, TIMP 발현에 대하여 연구할 예정이다.

Identification of a Novel Human Zinc Finger Gene, ZNF438, with Transcription Inhibition Activity

  • Zhong, Zhaomin;Wan, Bo;Qiu, Yun;Ni, Jun;Tang, Wenwen;Chen, Xinya;Yang, Yun;Shen, Suqin;Wang, Ying;Bai, Meirong;Lang, Qingyu;Yu, Long
    • BMB Reports
    • /
    • 제40권4호
    • /
    • pp.517-524
    • /
    • 2007
  • There were many different families of zinc finger proteins that contained multiple cysteine and/or histidine residues and used zinc to stabilize their folds. The classical C2H2 zinc finger proteins were the founding members of this superfamily and were among the most abundant proteins in eukaryotic genomes. C2H2 proteins typically contained several C2H2 fingers that made tandem contacts along the DNA. Here we reported a novel C2H2 type zinc finger gene, ZNF438, which encoded 828 amino acids that formed five zinc finger domains. Bioinformatics analysis revealed that the ZNF438 was mapped to human chromosome 10p11.2 and shared 62% identity with rat and mouse homologues. RT-PCR analysis indicated that it was ubiquitously expressed in 18 human adult tissues. With immunofluorescence assay, it was shown that the exogenous Flag-tagged ZNF438 was located in nucleus of COS-7 cells. To further explore the function of ZNF438, we examined the transcriptional activity of ZNF438 protein by transfecting recombinant pM-ZNF438 into mammalian cells. The subsequent analysis based on the duel luciferase assay system showed that ZNF438 was a transcriptional repressor.

조직내교잡법을 이용한 결핵균의 검출 (Detection of Mycobacterium Tuberculosis by In Situ Hybridization)

  • 박창수;김영철;이지신;정종재;김두홍;김진
    • Tuberculosis and Respiratory Diseases
    • /
    • 제48권5호
    • /
    • pp.699-708
    • /
    • 2000
  • 배경 : 올리고누클레오티드 탐식자를 이용한 조직내교잡법은 감염성 질환의 진단에 이용되고 있는 분자병리학적 검사방법이다. 그러나 결핵균의 세포벽에는 다량의 지방 성분이 포함되어 있어 탐식자의 침투에 어려움이 있다. 따라서 본 연구에서는 탐식자의 침투력을 높일 수 있는 조건을 알아보고, 결핵의 조직학적 진단법으로써 조직내교잡법의 이용 가능성을 확인해 보고자 한다. 방법 : 결핵으로 진단된 환자의 인체조직 절편과 배양된 결핵균을 흰쥐의 간 조직 내에 인위적으로 주입하여 제작한 실험조직 절편을 실험대상으로 하고, 바이오틴을 부착시킨 올리고누클레오티드 탐식자를 이용하여 조직내교잡법을 시행하였으며, 탐식자의 효과적인 침투를 위해 전처리를 시도하였다. 결과 : 펩신-염산 (2 mg/ml, 0.1M) 혼합액을 이용한 전처리 과정 (5-6분) 후 조직내교잡법을 수행한 결과 배양된 결핵균을 주입한 실험조직에서 결핵균의 검출에 성공할 수 있었다. 간 조직이 주사바늘에 의해 기계적으로 손상된 자리를 따라 군데군데 위치하고 있는 배양액 내에서 불규칙하게 모여있는 점상 혹은 간상의 양성반응을 관찰할 수 있었으며, 민감도는 80-90% 수준이었다. 그러나 결핵환자의 조직절편에서는 조직내교잡법을 이용하여 결핵균을 검출할 수 없었다. 결론 : 이는 배양액 내에서 빠르게 증식하는 결핵균과는 달리 인체에 감염된 결핵균에서는 rRNA의 양이 적어, 바이오틴이 부착된 탐식자를 이용한 조직내교잡법의 민감도를 벗어났을 것으로 추정된다. 따라서 향후 조직내교잡법으로 인체조직 내의 결핵균을 진단하기 위해서는 제자리 중합효소연쇄반응 (in situ PCR) 법의도입이나, 보다 높은 민감도를 갖는 동위원소를 부착 시킨 탐식자의 사용이 필요하다고 생각된다.

  • PDF

상지가 콜라겐 유발 관절염 랫트에 미치는 영향 - 배액림프절의 면역세포 발현 - (Effects of Mori Ramulus on Collagen-induced Arthritis Rat - Expression of Immunocells in Draining Lymph Node -)

  • 노성수;구세광;서영배
    • 동의생리병리학회지
    • /
    • 제23권5호
    • /
    • pp.1106-1115
    • /
    • 2009
  • Mori Ramulus has multiple applications in Korean traditional medicine prescription because it has antioxidant and anti-inflammatory effects by reducing macrophage activities. Yet, no studies on the anti-arthritic activity of EMR (extract of Mori Ramulus) have been reported in vitro and in vivo. Rheumatoid arthritis (RA) is a systemic autoimmune disease with chronic inflammation characterized by hyperplasia of synovial cells in affected joints, which ultimately leads to the destruction of cartilage and bone. Because collagen-induced arthritis (CIA) is similar to RA in pathological symptoms and immune reactions, there have been several reports concerning RA using CIA mouse model. Here, we investigated the effects of Mori Ramulus on RA using CIA mice. The importance of CD4+ Th1 cells in RA progress was previously indicated and studies further showed that Th17 cells play a prime role in severity of disease. Accordingly, the present study was focused on CIA associated with CD4+ Th1 cells and Th1 7 cells. DBA/1OlaHsd mice were immunized with bovine type II collagen (CII). After a second collagen immunization, mice were treated with EMR once a day for 4 weeks. The severity of arthritis within the paw joints was evaluated by histological assessment of cartilage destruction and pannus formation. Immune cells in peripheral blood mononuclear cells (PBMC), draining lymph node (DLN) and paw joints, cytokine production and gene expression were assessed from CIA mouse using ELISA, FACS and real-time PCR analysis. Administration of EMR significantly suppressed the progression of CIA and inhibited the production of TNF-$\alpha$, IL-6 and IL-17 in the serum. The erosion of cartilage was dramatically reduced in mouse knees after treatment with EMR. In conclusion, our results demonstrate that EMR significantly suppressed the progression of CIA and that this action was mediated by the decreased production of TNF-$\alpha$, IL-6, IL-17 and collagen II-specific antibody in the serum. EMR suppressed Th17 cells and reduced level of IL-6 via B cell suppression, and thus, the levels of autoantibodies produced from B cells were decreased. Furthermore, EMR suppressed NKT cells which directly stimulate B cells and develop imbalance of Th1/Th2 cell. Oral administration of EMR (100 mg/kg or 200 mg/kg) significantly suppressed the progression of CIA, which is comparable to that of methotrexate (MTX, 0.3 mg/kg) used as a positive control. We are currently studying the mechanism underlying the therapeutic role for EMR in CIA mice.

LMK02의 품질규격화와 $A{\beta}$ 올리고머에 의해 유도된 희주해마 H19-7세포주에 미치는 항치매효과 (Standardization of Quality and Inhibitory Effect of Alzheimer in $A{\beta}$ Oligomer-induced H19-7 Cells by LMK02)

  • 강형원;김상태;손형진;한평림;조형권;이영재;류영수
    • 동의생리병리학회지
    • /
    • 제23권2호
    • /
    • pp.397-404
    • /
    • 2009
  • For standardization of LMK02 quality, Ginsenoside Rg3 of Red Ginseng and Decursin of Angelica gigas Nakai in the constituents of LMK02 were estimated as indicative components. From LMK02 water extract, has been used in vitro test for its beneficial effects on neuronal survival and neuroprotective functions, particularly in connection with APP-related dementias and Alzheimer's disease (AD). $A{\beta}$ oligomer derived from proteolytic processing of the ${\beta}$-amyloid precursor protein (APP), including the amyloid-${\beta}$ peptide ($A{\beta}$), play a critical role in the pathogenesis of Alzheimer's dementia. We determined that oligomer amyloid-${\beta}$ ($A{\beta}$) have a profound attenuation in the increase in rat hippocampus H19-7 cells from. Experimental evidence indicates that LMK02 protects against neuronal damage from cells, but its cellular and molecular mechanisms remain unknown. Using a hippocampus cell line on $A{\beta}$ oligomer-induced neuronal cytotoxicity, we demonstrated that LMK02 inhibits formation of $A{\beta}$ oligomer, which are the behavior, and possibly causative, feature of AD. In the Red Ginseng, the average amounts of Ginsenoside Rg3 were $47.04{\mu}g/g$ and $42.3{\mu}g/g$, 90 % of its weight were set as a standard value. And, in the Angelica gigas Nakai, the average amounts of Decursin were 2.71 mg/g and 2.44mg/g, 90 % of its weight were also set as a standard value. The attenuated $A{\beta}$ oligomer in the presence of LMK02 was observed in the conditioned medium of this $A{\beta}$ oligomer-induced cells under in vitro. In the cells, LMK02 significantly activated antiapoptosis and decreased the production of ROS. These results suggest that neuronal damage in AD might be due to two factors: a direct $A{\beta}$ oligomer toxicity and multiple cellular and molecular neuroprotective mechanisms, including attenuation of apoptosis and direct inhibition of $A{\beta}$ oligomer, underlie the neuroprotective effects of LMK02 treatment.

운동강도가 rat의 MDA 농도와 SOD 활성에 미치는 영향 (The Effects of Exercise Intensity on MDA Concentration and SOD Activity in Rats)

  • 고기준
    • 생명과학회지
    • /
    • 제20권10호
    • /
    • pp.1476-1482
    • /
    • 2010
  • 본 연구는 생후 6주령의 Sprague Dawley계 수컷 흰쥐 25마리를 대상으로 하여 5그룹(통제군, 수영군 4그룹)으로 분류하여 4주간의 1% 콜레스테롤 식이로 고지혈증을 유도한 후, 6주간의 수영을 운동강도(무부하, 저부하, 중부하, 고부하)에 따라 실시하였으며, 지질과산화 생성반응과 간조직의 항산화효소 활성도에 미치는 영향을 분석한 결과, MDA 생성 반응에서는 통제군에 비해 수영그룹 모두가 유의하게(p<0.001) 낮게 나타났고, 수영그룹 간의 비교에서는 중부하수영군이 나머지 3그룹에 비해 유의하게(p<0.001) 낮게 나타났다. 또한, SOD 활성도에서는 통제군에 비해 수영그룹 모두가 유의하게(p<0.01) 높게 나타났으며, 수영그룹간 비교에서는 저부하수영군에 비해 무부하, 중부하, 고부하수영군이 유의하게(p<0.01) 높게 나타났다. 이상의 결과로 보아, 규칙적인 수영은 운동강도에 따라 고지혈증 상태에서의 산화적 스트레스에 의한 MDA 생성 반응을 선택적으로 억제시키고, SOD 효소 활성을 증가시켜 대표적인 항산화시스템을 효과적으로 개선시키는데 도움을 줄 것으로 생각된다.

Enhanced Healing of Rat Calvarial Bone Defects with Hypoxic Conditioned Medium from Mesenchymal Stem Cells through Increased Endogenous Stem Cell Migration via Regulation of ICAM-1 Targeted-microRNA-221

  • Chang, Woochul;Kim, Ran;Park, Sang In;Jung, Yu Jin;Ham, Onju;Lee, Jihyun;Kim, Ji Hyeong;Oh, Sekyung;Lee, Min Young;Kim, Jongmin;Park, Moon-Seo;Chung, Yong-An;Hwang, Ki-Chul;Maeng, Lee-So
    • Molecules and Cells
    • /
    • 제38권7호
    • /
    • pp.643-650
    • /
    • 2015
  • The use of conditioned medium from mesenchymal stem cells may be a feasible approach for regeneration of bone defects through secretion of various components of mesenchymal stem cells such as cytokines, chemokines, and growth factors. Mesenchymal stem cells secrete and accumulate multiple factors in conditioned medium under specific physiological conditions. In this study, we investigated whether the conditioned medium collected under hypoxic condition could effectively influence bone regeneration through enhanced migration and adhesion of endogenous mesenchymal stem cells. Cell migration and adhesion abilities were increased through overexpression of intercellular adhesion molecule-1 in hypoxic conditioned medium treated group. Intercellular adhesion molecule-1 was upregulated by microRNA-221 in mesenchymal stem cells because microRNAs are key regulators of various biological functions via gene expression. To investigate the effects in vivo, evaluation of bone regeneration by computed tomography and histological assays revealed that osteogenesis was enhanced in the hypoxic conditioned medium group relative to the other groups. These results suggest that behavioral changes of endogenous mesenchymal stem cells through microRNA-221 targeted-intercellular adhesion molecule-1 expression under hypoxic conditions may be a potential treatment for patients with bone defects.

자가면역성 뇌척수염 흰쥐의 활성화된 신경아교세포에서 증가된 osteopontin의 발현 (Increased osteopontin expression in activated glial cells in experimental autoimmune encephalomyelitis)

  • 박석재;황인선;김규범;신태균;지영흔
    • 대한수의학회지
    • /
    • 제46권3호
    • /
    • pp.177-184
    • /
    • 2006
  • Experimental autoimmune encephalomyelitis (EAE) is a disease model of multiple sclerosis (MS) that is characterized by remittance and relapse of the disease and autoimmune and demyelinating lesions in the central nervous system (CNS). Autoimmune inflammation is maintained by secretion of a large number of protein. Previous studies have suggested that transcripts encoding osteopontin (OPN) are frequently detected in the mRNA population of MS plaques. To elucidate the functional role of OPN in initiation and development of EAE, we examined the expression and localization of OPN in the spinal cord during acute EAE. We demonstrated that OPN significantly increased at the early stage of EAE and slightly declined thereafter by western blot analysis. An immunohistochemical study revealed that OPN was constitutively expressed in some glial cells (microglia, astrocytes) of white matter and neurons in the CNS of control rats. OPN expression was shown to be increased in the same cells at the early and peak stage of EAE. To identity cells expressing OPN by double-immunofluorescence labeling, we labeled rat spinal cord sections for OPN with a monoclonal OPN antibody and with mAbs for astrocyte (GFAP), microglia/macrophage (OX42)-specific markers. The major cell types of OPN-expressing cells were activated astrocytes and microglia in the adjacent inflammatory lesions. Interestingly, OPN was mainly expressed in the end feet of astrocytes around vascular cell adhesion molecule-1 (VCAM-1) expressing endothelial cells of CNS blood vessel. These findings suggest that increased levels of OPN in activated glial cell may play an important role in the recruitment of inflammatory cells into the CNS parenchyma during EAE.

Real-Time Monitoring of Mitochondrial ATP Synthesis and Hydrolysis by Surface Infrared Spectroscopy

  • Yamaguchi, Ryo-Taro;Hirano-Iwata, Ayumi;Aonuma, Yuki;Yoshimura, Yuya;Shinohara, Yasuo;Kimura, Yasuo;Niwano, Michio
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.108-109
    • /
    • 2013
  • Mitochondria play key roles in the production of cell's energy. Their dominant function is the synthesis of adenosine 5'-triphosphate (ATP) from adenosine diphosphate (ADP) and phosphate (Pi) through the oxidative phosphorylation. Evaluation of drug-induced mitochondrial toxicity has become increasingly important since mitochondrial dysfunction has recently been implicated in numerous diseases including cancer and diabetes mellitus. Mitochondrial functions have been monitored via oxygen consumption, mitochondrial membrane potential, and more importantly via ATP synthesis since ATP synthesis is the most essential function of mitochondria. Various analytical methods have been employed to investigate ATP synthesis in mitochondria, including high performance liquid chromatography (HPLC), bioluminescence technique, and pH measurement. However, most of these methods are based on destructive analysis or indirect monitoring through the enzymatic reaction. Infrared absorption spectroscopy (IRAS) is one of the useful techniques for real-time, label-free, and direct monitoring of biological reactions [1,2]. However, the strong water absorption requires very short path length in the order of several micrometers. Transmission measurements with thin path length are not suitable for mitochondrial assays because solution handlings necessary for evaluating mitochondrial toxicity, such as rapid mixing of drugs and oxygen supply, are difficult in such a narrow space. On the other hand, IRAS in the multiple internal reflection (MIR) geometry provides an ideal optical configuration to combine solution handling and aqueous-phase measurement. We have recently reportedon a real-time monitoring of drug-induced necrotic and apoptotic cell death using MIR-IRAS [3,4]. Clear discrimination between viable and damaged cells has been demonstrated, showing a promise as a label-free and real-time detection for cell-based assays. In the present study, we have applied our MIR-IRAS system to mitochondria-based assays by monitoring ATP synthesis in isolated mitochondria from rat livers. Mitochondrial ATP synthesis and hydrolysis were in situ monitored with MIR-IRAS, while dissolved oxygen level and solution pH were simultaneously monitored with O2 and pH electrodes, respectively. It is demonstrated that ATP synthesis and hydrolysis can be monitored by the IR spectral changes in phosphate groups in adenine nucleotides and MIR-IRAS is useful for evaluating time-dependent drug effects of mitochondrial toxicants.

  • PDF