• 제목/요약/키워드: multiple tuned mass damper

검색결과 41건 처리시간 0.023초

외팔보 형태의 수동형 Multiple Tuned Mass Damper를 이용한 구조물의 진동 억제 (The Suppression of Structural Vibration Using Cantilevers as Multiple Tuned Mass Damper)

  • 박재관;백윤수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.169-176
    • /
    • 1996
  • In order to suppress the structural vibration more effectively, Multiple Tuned Mass Damper(MTMD) which is composed of a number of Tuned Mass Damper(TMD) can be used. Especially, the passive MTMD has several advantages over active TMD like easy installment and maintenance, cost and performance for power failure situation(severe damage of power lines from earthquake), etc.. For this purpose the mass and damping ratio of MTMD and the distributed frequency range which shows the range of MTMD's distribution are used as main design parameters. When the passive MTMD is constituted with multiple cantilevers, the facility in its real production and its need for only a smaller space can be named as its several advantages. In this study, the satisfactory results were obtained from the composition of MTMD utilizing dynamic characters of cantilevers, and the verification was done by the comparison of the analysis from MTMD with the computer simulation.

  • PDF

복수의 TMD를 이용한 고층건물의 진동조절 (Vibration Control of Tall Buildings using Multiple Tuned Mass Dampers)

  • 민경원;홍성목
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.26-29
    • /
    • 1992
  • Modern tall buildings are subject to wind induced oscillations. Those oscillations can cause discomfort to the occupants. To control these motions, tuned mass dampers have been used. In this paper, component node synthesis, based on Lagrange multipliers formulation. is applied to the along-wind motion of tall buildings with multiple tuned mass dampers. Spectral densities of accelerations of top floor are compared by changing the numbers and locations of tuned mass dampers. It is found that multiple tuned mass dampers can be more effective than single tuned mass damper in reducing the acceleration response.

  • PDF

Seismic control performance and experimental study of multiple pounding tuned rolling mass damper

  • Peiran Fan;Shujin Li;Ling Mao
    • Earthquakes and Structures
    • /
    • 제24권4호
    • /
    • pp.247-258
    • /
    • 2023
  • Multiple pounding tuned rolling mass damper (MPTRMD) distributed in the cavity of voided slabs is proposed to passively control multi-story frame structures, which disperses the mass of the oscillator to multiple dampers so that the control device can be miniaturized without affecting the vibration control performance. The mechanism and the differential motion equations of the MPTRMD-controlled multi-degree-of-freedom system are derived based on the Lagrange principle. Afterward, this advanced RMD is applied to a simplified 20-floor steel frame to evaluate the seismic control performance in the numerical analysis. A four-storey frame structure equipped with MPTRMD is then taken for a shaking table test to verify its effectiveness of control performance. The pounding mechanism has been detailed studied numerically and experimentally as well. The numerical and experimental results show that the proposed damper is practically promising not only for its prominent control performance but also for its lightweight and space-saving. Additionally, the pounding mechanism influenced by the variable impact parameters exhibits a balance between the two effects of motional limitations and energy dissipation.

Dynamic characteristics of multiple inerter-based dampers for suppressing harmonically forced oscillations

  • Chen, Huating;Jia, Shaomin;He, Xuefeng
    • Structural Engineering and Mechanics
    • /
    • 제72권6호
    • /
    • pp.747-762
    • /
    • 2019
  • Based on the ball-screw mechanism, a tuned viscous mass damper (TVMD) has been proposed, which has functions of amplifying physical mass of the system and frequency tuning. Considering the sensitivity of a single TVMD's effectiveness to frequency mistuning like that of the conventional tuned mass damper (TMD) and according to the concept of the conventional multiple tuned mass damper (MTMD), in the present paper, multiple tuned mass viscous dampers (MTVMD) consisting of many tuned mass dampers (TVMD) with a uniform distribution of natural frequencies are considered for attenuating undesirable vibration of a structure. The MTVMD is manufactured by keeping the stiffness and damping constant and varying the mass associated with the lead of the ball-screw type inerter element in the damper. The structure is represented by its mode-generalized system in a specific vibration mode controlled using the mode reduced-order method. Modal properties and fundamental characteristics of the MTVMD-structure system are investigated analytically with the parameters, i.e., the frequency band, the average damping ratio, the tuning frequency ratio, the total number of TVMD and the total mass ratio. It is found that there exists an optimum set of the parameters that makes the frequency response curve of the structure flattened with smaller amplitudes in a wider input frequency range. The effectiveness and robustness of the MTVMD are also discussed in comparison with those of the usual single TVMD (STVMD) and the results shows that the MTVMD is more effective and robust with the same level of total mass.

Prevention of suspension bridge flutter using multiple tuned mass dampers

  • Ubertini, Filippo
    • Wind and Structures
    • /
    • 제13권3호
    • /
    • pp.235-256
    • /
    • 2010
  • The aeroelastic stability of bridge decks equipped with multiple tuned mass dampers is studied. The problem is attacked in the time domain, by representing self-excited loads with the aid of aerodynamic indicial functions approximated by truncated series of exponential filters. This approach allows to reduce the aeroelastic stability analysis in the form of a direct eigenvalue problem, by introducing an additional state variable for each exponential term adopted in the approximation of indicial functions. A general probabilistic framework for the optimal robust design of multiple tuned mass dampers is proposed, in which all possible sources of uncertainties can be accounted for. For the purposes of this study, the method is also simplified in a form which requires a lower computational effort and it is then applied to a general case study in order to analyze the control effectiveness of regular and irregular multiple tuned mass dampers. A special care is devoted to mistuning effects caused by random variations of the target frequency. Regular multiple tuned mass dampers are seen to improve both control effectiveness and robustness with respect to single tuned mass dampers. However, those devices exhibit an asymmetric behavior with respect to frequency mistuning, which may weaken their feasibility for technical applications. In order to overcome this drawback, an irregular multiple tuned mass damper is conceived which is based on unequal mass distribution. The optimal design of this device is finally pursued via a full domain search, which evidences a remarkable robustness against frequency mistuning, in the sense of the simplified design approach.

Multiple wall dampers for multi-mode vibration control of building structures under earthquake excitation

  • Rahman, Mohammad Sabbir;Chang, Seongkyu;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • 제63권4호
    • /
    • pp.537-549
    • /
    • 2017
  • One of the main concerns of civil engineering researchers is developing or modifying an energy dissipation system that can effectively control structural vibrations, and keep the structural response within tolerable limits during unpredictable events like earthquakes, wind and any kind of thrust load. This article proposes a new type of mass damper system for controlling wideband earthquake vibrations, called Multiple Wall Dampers (MWD). The basic principle of the Tuned Mass Damper (TMD) was used to design the proposed wall damper system. This passive energy dissipation system does not require additional mass for the damping system because the boundary wall mass of the building was used as a damper mass. The multi-mode approach was applied to determine the location and design parameters of the dampers. The dampers were installed based on the maximum amplitude of modes. To optimize the damper parameters, the multi-objective optimization Response Surface Methodology was used, with frequency response and maximum displacement as the objective functions. The obtained structural responses under different earthquake forces demonstrated that the MWD is one of the most capable tools for reducing the responses of multi-storied buildings, and this system can be practically used for new and existing building structures.

Comparison of semi-active and passive tuned mass damper systems for vibration control of a wind turbine

  • Lalonde, Eric R.;Dai, Kaoshan;Bitsuamlak, Girma;Lu, Wensheng;Zhao, Zhi
    • Wind and Structures
    • /
    • 제30권6호
    • /
    • pp.663-678
    • /
    • 2020
  • Robust semi-active vibration control of wind turbines using tuned mass dampers (TMDs) is a promising technique. This study investigates a 1.5 megawatt wind turbine controlled by eight different types of tuned mass damper systems of equal mass: a passive TMD, a semi-active varying-spring TMD, a semi-active varying-damper TMD, a semi-active varying-damper-and-spring TMD, as well as these four damper systems paired with an additional smaller passive TMD near the mid-point of the tower. The mechanism and controllers for each of these TMD systems are explained, such as employing magnetorheological dampers for the varying-damper TMD cases. The turbine is modelled as a lumped-mass 3D finite element model. The uncontrolled and controlled turbines are subjected to loading and operational cases including service wind loads on operational turbines, seismic loading with service wind on operational turbines, and high-intensity storm wind loads on parked turbines. The displacement and acceleration responses of the tower at the first and second mode shape maxima were used as the performance indicators. Ultimately, it was found that while all the semi-active TMD systems outperformed the passive systems, it was the semi-active varying-damper-and-spring system that was found to be the most effective overall - capable of controlling vibrations about as effectively with only half the mass as a passive TMD. It was also shown that by reducing the mass of the TMD and adding a second smaller TMD below, the vibrations near the mid-point could be greatly reduced at the cost of slightly increased vibrations at the tower top.

Multiple tuned mass dampers for controlling coupled buffeting and flutter of long-span bridges

  • Lin, Yuh-Yi;Cheng, Chii-Ming;Lee, Chung-Hau
    • Wind and Structures
    • /
    • 제2권4호
    • /
    • pp.267-284
    • /
    • 1999
  • Multiple tuned mass dampers are proposed to suppress the vertical and torsional buffeting and to increase the aerodynamic stability of long-span bridges. Each damper has vertical and torsional frequencies, which are tuned to the corresponding frequencies of the structural modes to suppress the resonant effects. These proposed dampers maintain the advantage of traditional multiple mass dampers, but have the added capability of simultaneously controlling vertical and torsional buffeting responses. The aerodynamic coupling is incorporated into the formulations, allowing this model to effectively increase the critical speed of a bridge for either single-degree-of-freedom flutter or coupled flutter. The reduction of dynamic response and the increase of the critical speed through the attachment of the proposed dampers to the bridge are also discussed. Through a parametric analysis, the characteristics of the multiple tuned mass dampers are studied and the design parameters - including mass, damping, frequency bandwidth, and total number of dampers - are proposed. The results indicate that the proposed dampers effectively suppress the vertical and the torsional buffeting and increase the structural stability. Moreover, these tuned mass dampers, designed within the recommended parameters, are not only more effective but also more robust than a single TMD against wind-induced vibration.

Active tuned tandem mass dampers for seismic structures

  • Li, Chunxiang;Cao, Liyuan
    • Earthquakes and Structures
    • /
    • 제17권2호
    • /
    • pp.143-162
    • /
    • 2019
  • Motivated by a simpler and more compact hybrid active tuned mass damper (ATMD) system with wide frequency spacing (i.e., high robustness) but not reducing the effectiveness using the least number of ATMD units, the active tuned tandem mass dampers (ATTMD) have been proposed to attenuate undesirable oscillations of structures under the ground acceleration. Likewise, it is expected that the frequency spacing of the ATTMD is comparable to that of the active multiple tuned mass dampers (AMTMD) or the multiple tuned mass dampers (MTMD). In accordance with the mode generalised system in the specific vibration mode being controlled (simply referred herein to as the structure), the closed-form expression of the dimensionless displacement variances has been derived for the structure with the attached ATTMD. The criterion for the optimum searching may then be determined as minimization of the dimensionless displacement variances. Employing the gradient-based optimization technique, the effects of varying key parameters on the performance of the ATTMD have been scrutinized in order to probe into its superiority. Meanwhile, for the purpose of a systematic comparison, the optimum results of two active tuned mass dampers (two ATMDs), two tuned mass dampers (two TMDs) without the linking damper, and the TTMD are included into consideration. Subsequent to work in the frequency domain, a real-time Simulink implementation of dynamic analysis of the structure with the ATTMD under earthquakes is carried out to verify the findings of effectiveness and stroke in the frequency domain. Results clearly show that the findings in the time domain support the ones in the frequency domain. The whole work demonstrates that ATTMD outperforms two ATMDs, two TMDs, and TTMD. Thereinto, a wide frequency spacing feature of the ATTMD is its highlight, thus deeming it a high robustness control device. Furthermore, the ATTMD system only needs the linking dashpot, thus embodying its simplicity.

TMD와 TLCD의 지진응답에 대한 제어성능 평가 연구 (Performance Evaluation of TMD and TLCD for Earthquake-Induced Response Control)

  • 김홍진;김형섭;민경원;오정근
    • 한국지진공학회논문집
    • /
    • 제7권5호
    • /
    • pp.85-91
    • /
    • 2003
  • 설치의 용이성과 경제성, 여러 다른 용도로의 전용 가능성, 유지보수의 용이성, 그리고 재동조의 편의성 등을 고려할 때 TLCD (Tuned Liquid Column Damper)는 기존에 건물의 응답제어에 많이 사용되는 TMD를 대체할 수 있는 감쇠장치라 할 수 있다. 본 논문에서는 TMD (Tuned Mass Damper)와 TLCD의 지진하중을 받는 구조물의 응답제어 성능평가에 관한 비교연구를 수행하였다. 성능비교분석 결과, 층간변위 제어성능에서는 TLCD가 TMD보다 우수한 성능을 보였고 가속도 제어성능에서는 서로 비슷한 것으로 나타났다. 또한 층간변위 제어에서는 저층에서 큰 제어성능을 발휘하고, 절대가속도 제어에서는 상층부에서 성능이 우수한 것으로 나타났다. 이것은 TLCD가 지진에 가장 문제가 되는 구조물의 안전성 및 거주자의 사용성에 있어서 효율적인 감쇠기라 할 수 있는 근거가 된다.