• Title/Summary/Keyword: multiple solution task

Search Result 47, Processing Time 0.024 seconds

Path Planning of Swarm Mobile Robots Using Firefly Algorithm (Firefly Algorithm을 이용한 군집 이동 로봇의 경로 계획)

  • Kim, Hue-Chan;Kim, Je-Seok;Ji, Yong-Kwan;Park, Jahng-Hyon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.435-441
    • /
    • 2013
  • A swarm robot system consists of with multiple mobile robots, each of which is called an agent. Each agent interacts with others and cooperates for a given task and a given environment. For the swarm robotic system, the loss of the entire work capability by malfunction or damage to a single robot is relatively small and replacement and repair of the robot is less costly. So, it is suitable to perform more complex tasks. The essential component for a swarm robotic system is an inter-robot collaboration strategy for teamwork. Recently, the swarm intelligence theory is applied to robotic system domain as a new framework of collective robotic system design. In this paper, FA (Firefly Algorithm) which is based on firefly's reaction to the lights of other fireflies and their social behavior is employed to optimize the group behavior of multiple robots. The main application of the firefly algorithm is performed on path planning of swarm mobile robots and its effectiveness is verified by simulations under various conditions.

Development of Evaluation Method for Performance of Weapon System using Axiomatic Design based Inner Dependence AHP (공리적설계 기반의 내부종속 AHP를 이용한 국방무기 해외 구매사업의 무기성능 평가방법 개발)

  • Cho, Hyunki;Kim, Woo-Je
    • Korean Management Science Review
    • /
    • v.29 no.3
    • /
    • pp.45-65
    • /
    • 2012
  • Test and evaluation of weapon system is an important task to evaluate the performance of overseas weapon system purchasing project. Especially, quantitative evaluation of performances is hardly completed in defense projects where multiple criteria are conflicted each other. In order to solve this problem, we apply Axiomatic Design (AD) and Inner Dependence AHP method. First, finite functional requirements (FRs) are categorized in hierarchy structure by selecting proper design parameters (DPs) to implement their corresponding FRs. If there are no ways to select DPs when design is coupled between FRs and DPs, then inner dependence is allowed to overcome the strict rule of independence in AHP. Second, the weights of DPs are calculated by applying both Inner Dependence AHP method for coupled design and normal AHP method for uncoupled or decoupled design. Finally, information axiom of AD is applied to the proposed weapon systems by calculating information contents for all parameters. Weapon system with minimum sum of information contents is considered as the best solution. The proposed method in this study should be used in multiple criteria decision making problems involving various conflicting criteria.

Implementation of MAPF-based Fleet Management System (다중에이전트 경로탐색(MAPF) 기반의 실내배송로봇 군집제어 구현)

  • Shin, Dongcheol;Moon, Hyeongil;Kang, Sungkyu;Lee, Seungwon;Yang, Hyunseok;Park, Chanwook;Nam, Moonsik;Jung, Kilsu;Kim, Youngjae
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.407-416
    • /
    • 2022
  • Multiple AMRs have been proved to be effective in improving warehouse productivity by eliminating workers' wasteful walking time. Although Multi-agent Path Finding (MAPF)-based solution is an optimal approach for this task, its deployment in practice is challenging mainly due to its imperfect plan-execution capabilities and insufficient computing resources for high-density environments. In this paper, we present a MAPF-based fleet management system architecture that robustly manages multiple robots by re-computing their paths whenever it is necessary. To achieve this, we defined four events that trigger our MAPF solver framework to generate new paths. These paths are then delivered to each AMR through ROS2 message topic. We also optimized a graph structure that effectively captures spatial information of the warehouse. By using this graph structure we can reduce computational burden while keeping its rescheduling functionality. With proposed MAPF-based fleet management system, we can control AMRs without collision or deadlock. We applied our fleet management system to the real logistics warehouse with 10 AMRs and observed that it works without a problem. We also present the usage statistic of adopting AMRs with proposed fleet management system to the warehouse. We show that it is useful over 25% of daily working time.

A New Multi-objective Evolutionary Algorithm for Inter-Cloud Service Composition

  • Liu, Li;Gu, Shuxian;Fu, Dongmei;Zhang, Miao;Buyya, Rajkumar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.1-20
    • /
    • 2018
  • Service composition in the Inter-Cloud raises new challenges that are caused by the different Quality of Service (QoS) requirements of the users, which are served by different geo-distributed Cloud providers. This paper aims to explore how to select and compose such services while considering how to reach high efficiency on cost and response time, low network latency, and high reliability across multiple Cloud providers. A new hybrid multi-objective evolutionary algorithm to perform the above task called LS-NSGA-II-DE is proposed, in which the differential evolution (DE) algorithm uses the adaptive mutation operator and crossover operator to replace the those of the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) to get the better convergence and diversity. At the same time, a Local Search (LS) method is performed for the Non-dominated solution set F{1} in each generation to improve the distribution of the F{1}. The simulation results show that our proposed algorithm performs well in terms of the solution distribution and convergence, and in addition, the optimality ability and scalability are better compared with those of the other algorithms.

Analysis on Kinematics and Dynamics of Human Arm Movement Toward Upper Limb Exoskeleton Robot Control Part 1: System Model and Kinematic Constraint (상지 외골격 로봇 제어를 위한 인체 팔 동작의 기구학 및 동역학적 분석 - 파트 1: 시스템 모델 및 기구학적 제한)

  • Kim, Hyunchul;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1106-1114
    • /
    • 2012
  • To achieve synchronized motion between a wearable robot and a human user, the redundancy must be resolved in the same manner by both systems. According to the seven DOF (Degrees of Freedom) human arm model composed of the shoulder, elbow, and wrist joints, positioning and orientating the wrist in space is a task requiring only six DOFs. Due to this redundancy, a given task can be completed by multiple arm configurations, and thus there exists no unique mathematical solution to the inverse kinematics. This paper presents analysis on the kinematic and dynamic aspect of the human arm movement and their effect on the redundancy resolution of the human arm based on a seven DOF manipulator model. The redundancy of the arm is expressed mathematically by defining the swivel angle. The final form of swivel angle can be represented as a linear combination of two different swivel angles achieved by optimizing different cost functions based on kinematic and dynamic criteria. The kinematic criterion is to maximize the projection of the longest principal axis of the manipulability ellipsoid for the human arm on the vector connecting the wrist and the virtual target on the head region. The dynamic criterion is to minimize the mechanical work done in the joint space for each two consecutive points along the task space trajectory. As a first step, the redundancy based on the kinematic criterion will be thoroughly studied based on the motion capture data analysis. Experimental results indicate that by using the proposed redundancy resolution criterion in the kinematic level, error between the predicted and the actual swivel angle acquired from the motor control system is less than five degrees.

Adaptive Call Admission Control Scheme for Heterogeneous Overlay Networks

  • Kim, Sung-Wook
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.461-466
    • /
    • 2012
  • Any future heterogeneous overlay network system must be able to support ubiquitous access across multiple wireless networks. To coordinate these diverse network environments, one challenging task is a call admission decision among different types of network. In this paper, we propose a new call admission control scheme to provide quality of service (QoS) while ensuring system efficiency. Based on the interplay between network structure and dynamics, we estimate the network's QoS level and adjust the service price adaptively with the aim of maximizing the network performance. A simulation shows that the proposed scheme can approximate an optimized solution while ensuring a well-balanced network performance in widely different network environments.

Real-Time Objects Tracking using Color Configuration in Intelligent Space with Distributed Multi-Vision (분산다중센서로 구현된 지능화공간의 색상정보를 이용한 실시간 물체추적)

  • Jin, Tae-Seok;Lee, Jang-Myung;Hashimoto, Hideki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.843-849
    • /
    • 2006
  • Intelligent Space defines an environment where many intelligent devices, such as computers and sensors, are distributed. As a result of the cooperation between smart devices, intelligence emerges from the environment. In such scheme, a crucial task is to obtain the global location of every device in order to of for the useful services. Some tracking systems often prepare the models of the objects in advance. It is difficult to adopt this model-based solution as the tracking system when many kinds of objects exist. In this paper the location is achieved with no prior model, using color properties as information source. Feature vectors of multiple objects using color histogram and tracking method are described. The proposed method is applied to the intelligent environment and its performance is verified by the experiments.

Computational Cost Reduction Method for HQP-based Hierarchical Controller for Articulated Robot (다관절 로봇의 계층적 제어를 위한 HQP의 연산 비용 감소 방법)

  • Park, Mingyu;Kim, Dongwhan;Oh, Yonghwan;Lee, Yisoo
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.16-24
    • /
    • 2022
  • This paper presents a method that can reduce the computational cost of the hierarchical quadratic programming (HQP)-based robot controller. Hierarchical controllers can effectively manage articulated robots with many degrees of freedom (DoFs) to perform multiple tasks. The HQP-based controller is one of the generic hierarchical controllers that can provide a control solution guaranteeing strict task priority while handling numerous equality and inequality constraints. However, according to a large amount of computation, it can be a burden to use it for real-time control. Therefore, for practical use of the HQP, we propose a method to reduce the computational cost by decreasing the size of the decision variable. The computation time and control performance of the proposed method are evaluated by real robot experiments with a 15 DoFs dual-arm manipulator.

A Study on the Analysis Method of Artificial Intelligence for Real-Time Data Prediction. (실시간 데이터 예측을 위한 인공지능 분석 방법 연구)

  • Hong, Phil-Doo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.547-549
    • /
    • 2021
  • In Artificial Intelligence analysis, the process of creating a model and verifying it is a task that requires computational processing time because it is Batch Processing performed with already generated data. We need to model, validate, and predict real-time data, such as stocks and defense information, with data generated directly in front of us. As a solution to this, we solve it by applying techniques to segment the data required for artificial intelligence modeling tasks in order of time processing and distribute the data across multiple processes.

  • PDF

SPMLD: Sub-Packet based Multipath Load Distribution for Real-Time Multimedia Traffic

  • Wu, Jiyan;Yang, Jingqi;Shang, Yanlei;Cheng, Bo;Chen, Junliang
    • Journal of Communications and Networks
    • /
    • v.16 no.5
    • /
    • pp.548-558
    • /
    • 2014
  • Load distribution is vital to the performance of multipath transport. The task becomes more challenging in real-time multimedia applications (RTMA), which impose stringent delay requirements. Two key issues to be addressed are: 1) How to minimize end-to-end delay and 2) how to alleviate packet reordering that incurs additional recovery time at the receiver. In this paper, we propose sub-packet based multipath load distribution (SPMLD), a new model that splits traffic at the granularity of sub-packet. Our SPMLD model aims to minimize total packet delay by effectively aggregating multiple parallel paths as a single virtual path. First, we formulate the packet splitting over multiple paths as a constrained optimization problem and derive its solution based on progressive approximation method. Second, in the solution, we analyze queuing delay by introducing D/M/1 model and obtain the expression of dynamic packet splitting ratio for each path. Third, in order to describe SPMLD's scheduling policy, we propose two distributed algorithms respectively implemented in the source and destination nodes. We evaluate the performance of SPMLD through extensive simulations in QualNet using real-time H.264 video streaming. Experimental results demonstrate that: SPMLD outperforms previous flow and packet based load distribution models in terms of video peak signal-to-noise ratio, total packet delay, end-to-end delay, and risk of packet reordering. Besides, SPMLD's extra overhead is tiny compared to the input video streaming.