• Title/Summary/Keyword: multiple sensor network

Search Result 362, Processing Time 0.024 seconds

An Energy Efficient Multi-Chaning Routing Protocol using Angle of Arrival for WSN (WSN 환경에서 AoA를 이용한 에너지 효율적 멀티체이닝 라우팅 프로토콜)

  • Chae, Ji-Hoon;Kwon, Tae-Wook
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.11
    • /
    • pp.1564-1571
    • /
    • 2022
  • Wireless sensor network(WSN) is being used in various fields such as reconnaissance, echelon scale identification, weather observation, etc. using small sensors in an environment without a network infrastructure environment. In addition, WSN uses limited battery power, so study on routing protocols to extend the lifetime of the network is important. PEGASIS, a hierarchical routing protocol, accounts for the majority of energy-efficient routing protocol studies and is well known as a representative protocol. In this study, based on PEGASIS, we propose a protocol that constructs multiple chains rather than one chain using the AoA of nodes. The proposed protocol has the advantage of reducing the transmission distance of nodes and eliminating unnecessary transmissions, thereby increasing energy efficiency compared to the existing protocols.

Improvement of LECEEP Protocol through Dual Chain Configuration in WSN Environment(A-LECEEP, Advanced LEACH based Chaining Energy Efficient Protocol) (WSN 환경에서 이중체인 구성을 통한 LECEEP 프로토콜 개선(A-LECEEP))

  • Kim, Chanhyuk;Kwon, Taewook
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1068-1075
    • /
    • 2021
  • Wireless sensor network (WSN) can be usefully used in battlefields requiring rapid installation and operation by enabling surveillance and reconnaissance using small sensors in areas where any existing network infrastructure is not formed. As WSN uses battery, energy efficiency acts as a very important issue in network survivability. Layer-based routing protocols have been studied a lot in the aspect of energy efficiency. Many research selected LEACH and PEGASIS protocols as their comparison targets. This study examines the two protocols and LECEEP, a protocol designed by combining their advantages, and proposes a new protocol, A-LECEEP, which is more energy efficient than the others. The proposed protocol can increase energy efficiency compared to the existing ones by eliminating unnecessary transmissions with multiple chains configuration.

An Optimized Node-Disjoint Multi-path Routing Protocol for Multimedia Data Transmission over Wireless Sensor Network (무선 센서 네트워크에서의 멀티미디어 데이터 전송을 위한 최적의 노드 비 겹침 다중경로 탐색 프로토콜)

  • Jung, Sung-Rok;Lee, Jeong-Hoon;Roh, Byeong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11A
    • /
    • pp.1021-1033
    • /
    • 2008
  • In recent years, the growing interest in wireless sensor network has resulted in thousands of publications. Most of this research is concerned with delivering raw data such as temperature, pressure, or humidity. Recently, the focus of sensor network paradigm is changing for delivering multimedia contents. However, most existing routing protocols are not very practical for transmitting multimedia contents in resource constrained sensor networks. In this paper, we propose an optimized node-disjoint multi-path routing protocol for throughput enhancement and load balancing. We focused on how to allocate traffic to independent multiple end-to-end routes. Decentralized transmission using our node-disjoint multi-path routing scheme results in bandwidth aggregation and throughput enhancement. In addition, our scheme provides ways to remove link-joint routes for decreasing routing overhead.

A PCA-based Data Stream Reduction Scheme for Sensor Networks (센서 네트워크를 위한 PCA 기반의 데이터 스트림 감소 기법)

  • Fedoseev, Alexander;Choi, Young-Hwan;Hwang, Een-Jun
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.35-44
    • /
    • 2009
  • The emerging notion of data stream has brought many new challenges to the research communities as a consequence of its conceptual difference with conventional concepts of just data. One typical example is data stream processing in sensor networks. The range of data processing considerations in a sensor network is very wide, from physical resource restrictions such as bandwidth, energy, and memory to the peculiarities of query processing including continuous and specific types of queries. In this paper, as one of the physical constraints in data stream processing, we consider the problem of limited memory and propose a new scheme for data stream reduction based on the Principal Component Analysis (PCA) technique. PCA can transform a number of (possibly) correlated variables into a (smaller) number of uncorrelated variables. We adapt PCA for the data stream of a sensor network assuming the cooperation of a query engine (or application) with a network base station. Our method exploits the spatio-temporal correlation among multiple measurements from different sensors. Finally, we present a new framework for data processing and describe a number of experiments under this framework. We compare our scheme with the wavelet transform and observe the effect of time stamps on the compression ratio. We report on some of the results.

  • PDF

Design of Multi-node Real-time Diagnostic and Management System Using Zigbee Sensor Network (Zigbee 센서 네트워크를 활용한 다중노드 실시간 진단 및 관리시스템 설계)

  • Kang, Moonsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.152-161
    • /
    • 2014
  • In this paper, a multi-node real-time diagnostic and management system based on zigbee sensor network is proposed, which is to monitor and diagnose multiple nodes as well as to control the data generated from the various multiple sensors collectively. The proposed system is designed to transmit the collected wireless and wired data to the server for monitoring and controling efficiently the condition for multi-nodes by taking the corresponding actions according to the analysis. The system is implemented to make it possible to manage the sensor data by classifying them, of which data are issued from the clustered sources with a number of the remote sensors. In order to evaluate the performance of the proposed system, we measure and analyze both the transmission delay time according to the distance and the data loss rate issued from multiple sensors. The results shows that the proposed system has a good performance.

Surface Condition Monitoring in Magnetic Abrasive Polishing of NAK80 Using AE Sensor and Neural Network (AE 센서와 신경회로망을 이용한 NAK80 금형강의 자기연마 가공특성 모니터링)

  • Kim, Kwang-Heui;Shin, Chang-Min;Kim, Tae-Wan;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.601-607
    • /
    • 2012
  • The magnetic abrasive polishing (MAP), for online monitoring with AE sensor attachment, was performed in this study. To predict the surface roughness after the magnetic abrasive polishing of NAK80, the signal data acquired from the AE sensor were analyzed. A dimensionless coefficient, which consisted of average of AErms and standard deviation of AE signal, was defined as a characteristic of the MAP and a prediction model was obtained using least square method. A neural network, which had multiple input parameters from AE signals and polishing conditions, was applied for predicting the surface roughness. As a result of this study, it was seen that there was very close correlation between the AE signal and the surface roughness in the MAP. And then on-line prediction of the surface roughness after the MAP of the NAK80 was possible by the developed prediction model.

A Residual Power Estimation Scheme Using Machine Learning in Wireless Sensor Networks (센서 네트워크에서 기계학습을 사용한 잔류 전력 추정 방안)

  • Bae, Shi-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.1
    • /
    • pp.67-74
    • /
    • 2021
  • As IoT(Internet Of Things) devices like a smart sensor have constrained power sources, a power strategy is critical in WSN(Wireless Sensor Networks). Therefore, it is necessary to figure out the residual power of each sensor node for managing power strategies in WSN, which, however, requires additional data transmission, leading to more power consumption. In this paper, a residual power estimation method was proposed, which uses ignorantly small amount of power consumption in the resource-constrained wireless networks including WSN. A residual power prediction is possible with the least data transmission by using Machine Learning method with some training data in this proposal. The performance of the proposed scheme was evaluated by machine learning method, simulation, and analysis.

Fabrication of a Multiplexing Sensor Probe for Measuring the Blade Deflection of a Wind Power Generator (풍력발전기 블레이드 처짐 측정을 위한 다중화 센서 탐촉자 설계 제작)

  • Kim, Ji-Dea;Lee, Dong-Ju
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.178-185
    • /
    • 2014
  • This paper describes a fabrication multiplexing sensor probe that employs a fiber Bragg grating(FBG) based on multiple measurements to determine the blade deflection of a wind power generator the reliability analysis of this probe is also presented. To diminish the temperature sensitivity of the FBG sensor, we form multiple CFRPs onto the upper and lower layers of the FBG and package it with an epoxy resin. As a result, the depth of the CFRP is 1mm, and the temperature sensitivity is $2.39pm/^{\circ}C$. We construct a sensor network utilizing the fabricated sensor with a blade beam model. As the number of pendulums is increased on the fore-end of the beam, the strain value is measured. The strain variation is calculated from the measurement of the load on the blade beam model by monitoring the strain of the FBG sensor. When the linear equation is applied, the strain error is 0.4% and when the finite difference method is used, the tip deflection error is 3.3%. The displacement error derived from the strain value of the FBG sensor is 4.39%. The calculated result between the measured value of the dead-end of the beam and the strain is less than 2.46% tip distortion error. Therefore, our proposed multiplexing sensor probe is a low-cost and high-reliability solution for a commercial wind power generator.

A Data Gathering Scheme using Dynamic Branch of Mobile Sink in Wireless Sensor Networks (무선 센서망에서 이동 싱크의 동적 브랜치를 통한 데이터 수집 방안)

  • Lee, Kil-Hung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.1
    • /
    • pp.92-97
    • /
    • 2012
  • This paper suggests a data gathering scheme using dynamic branch tree in wireless sensor networks. A mobile sink gathers data from each sensor node using a dynamic data gathering tree rooted at the mobile sink node. As the sink moves, a tree that has multiple branch is formed and changed dynamically as with the position of the sink node. A hop-based scope filter and a restricted flooding scheme of the tree are also suggested. Simulation results show that the proposed data gathering scheme has better results in data arrival rate, the end-to-end delay and energy saving characteristics compared with the previous scheme.