• 제목/요약/키워드: multiple regression analysis model

검색결과 1,707건 처리시간 0.033초

다중회귀모형을 이용한 104주 주 최대 전력수요예측 (Weekly Maximum Electric Load Forecasting Method for 104 Weeks Using Multiple Regression Models)

  • 정현우;김시연;송경빈
    • 전기학회논문지
    • /
    • 제63권9호
    • /
    • pp.1186-1191
    • /
    • 2014
  • Weekly and monthly electric load forecasting are essential for the generator maintenance plan and the systematic operation of the electric power reserve. This paper proposes the weekly maximum electric load forecasting model for 104 weeks with the multiple regression model. Input variables of the multiple regression model are temperatures and GDP that are highly correlated with electric loads. The weekly variable is added as input variable to improve the accuracy of electric load forecasting. Test results show that the proposed algorithm improves the accuracy of electric load forecasting over the seasonal autoregressive integrated moving average model. We expect that the proposed algorithm can contribute to the systematic operation of the power system by improving the accuracy of the electric load forecasting.

다중 선형 회귀와 랜덤 포레스트 기반의 코로나19 신규 확진자 예측 (Prediction of New Confirmed Cases of COVID-19 based on Multiple Linear Regression and Random Forest)

  • 김준수;최병재
    • 대한임베디드공학회논문지
    • /
    • 제17권4호
    • /
    • pp.249-255
    • /
    • 2022
  • The COVID-19 virus appeared in 2019 and is extremely contagious. Because it is very infectious and has a huge impact on people's mobility. In this paper, multiple linear regression and random forest models are used to predict the number of COVID-19 cases using COVID-19 infection status data (open source data provided by the Ministry of health and welfare) and Google Mobility Data, which can check the liquidity of various categories. The data has been divided into two sets. The first dataset is COVID-19 infection status data and all six variables of Google Mobility Data. The second dataset is COVID-19 infection status data and only two variables of Google Mobility Data: (1) Retail stores and leisure facilities (2) Grocery stores and pharmacies. The models' performance has been compared using the mean absolute error indicator. We also a correlation analysis of the random forest model and the multiple linear regression model.

Estimation of peak wind response of building using regression analysis

  • Payan-Serrano, Omar;Bojorquez, Eden;Reyes-Salazar, Alfredo;Ruiz-Garcia, Jorge
    • Wind and Structures
    • /
    • 제29권2호
    • /
    • pp.129-137
    • /
    • 2019
  • The maximum along-wind displacement of a considerable amount of building under simulated wind loads is computed with the aim to produce a simple prediction model using multiple regression analysis with variables transformation. The Shinozuka and Newmark methods are used to simulate the turbulent wind and to calculate the dynamic response, respectively. In order to evaluate the prediction performance of the regression model with longer degree of determination, two complex structural models were analyzed dynamically. In addition, the prediction model proposed is used to estimate and compare the maximum response of two test buildings studied with wind loads by other authors. Finally, it was proved that the prediction model is reliable to estimate the maximum displacements of structures subjected to the wind loads.

Multiple Regression Technique for Productivity Analysis of the Jointed Plane Concrete Pavement (JPCP)

  • Yoo, Wi-Sung
    • 한국건설관리학회논문집
    • /
    • 제9권6호
    • /
    • pp.268-276
    • /
    • 2008
  • In highway construction projects, concrete pavement productivity has been challenged with constructors and decision-makers; at present there are few methods available to accurately evaluate the factors impacting on it. Any inefficient method to analyze it leads to the excessive schedule, higher rehabilitation costs, shorter service life, and reduction of ride quality. To implement these negative outcomes, constructors or decision-makers need a systematic tool that can be used to categorize the factors related to construction productivity. This paper applies multiple regression technique for productivity analysis of the Jointed Plane Concrete Pavement (JPCP), identifies the significant factors, and provides a predictive model assisting in monitoring and managing the productivity of the JPCP construction process. The completed and progressive projects are employed to derive and assess the proposed model. The results are analyzed to illustrate its capabilities.

다변량분석을 이용한 터널에서의 간편 RMR에 관한 연구 (A Study of Simple Rock Mass Rating for Tunnel Using Multivariate Analysis)

  • 위용곤;노상림;윤지선
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.493-500
    • /
    • 2000
  • Rock Mass Rating has been widely applied to the underground tunnel excavation and many other practical problems in rock engineering. However, Rock Mass Rating is hard to make out because it is difficult to estimate each valuation items through all kind of field situations and items of RMR have interdependence. So the experts of tunnel assessment have problems with rating rock mass. In this study, using multivariate analysis based on domestic data(1011EA) of water conveyance tunnel, we presented rock mass rating system which is objective and easy to use. The constituents of RMR are decided to RQD, condition of discontinuities, groundwater conditions, orientation of discontinuities, intact rock strength, spacing of discontinuities in important order. In each step, we proposed the best multiple regression model for RMR system. And using data which have been collected at other site, we examined that presented multiple regression model was useful.

  • PDF

다중회귀분석을 이용한 대규모 비탈면의 위험도 평가 (Risk Assesment for Large-scale Slopes Using Multiple Regression Analysis)

  • 이종건;장범수;김용수;석재욱;문준식
    • 한국지반공학회논문집
    • /
    • 제29권11호
    • /
    • pp.99-106
    • /
    • 2013
  • 본 연구에서는 일반국도 상에 존재하는 2종 비탈면 104개소에 대해 상태평가 항목과 상태평가 등급의 연관성을 분석하고, 평가항목을 고려한 다중회귀분석을 통해 안전등급을 예측할 수 있는 회귀모형을 제시하였다. 분석결과, 사면경사와 강우 및 지하수의 평가항목은 상태평가 등급과의 연관성이 낮은 것으로 분석되었다. 또한, 다중회귀분석을 통해 제시된 회귀모형은 절취상태, 강우 및 지하수의 항목을 판단하기 어려운 조건에서 활용이 가능한 것으로 판단된다.

Relationship between Aiming Patterns and Scores in Archery Shooting

  • Quan, ChengHao;Lee, Sangmin
    • 한국운동역학회지
    • /
    • 제26권4호
    • /
    • pp.353-360
    • /
    • 2016
  • Objective: The aim of this study was to investigate the relationship between aiming patterns and scores in archery shooting. Method: Four (N = 4) elementary-level archers from middle school participated in this study. Aiming pattern was defined by averaged acceleration data measured from accelerometers attached on the body during the aiming phase in archery shooting. Stepwise multiple regression analysis was used to test whether a model incorporating aiming patterns from all nine accelerometers could predict the scores. In order to extract period of interest (POI) data from raw data, a Dynamic Time Warping (DTW)-based extraction method was presented. Results: Regression models for all four subjects are conducted with different significance levels and variables. The significance levels of the regression models are 0.12%, 1.61%, 0.55%, and 0.4% respectively; the $R^2$ of the regression models is 64.04%, 27.93%, 72.02%, and 45.62% respectively; and the maximum significance levels of parameters in the regression models are 1.26%, 4.58%, 5.1%, and 4.98% respectively. Conclusion: Our results indicated that the relationship between aiming patterns and scores was described by a regression model. Analysis of the significance levels, variables, and parameters of the regression model showed that our approach - regression analysis with DTW - is an effective way to raise scores in archery shooting.

딥러닝 모형을 이용한 신호교차로 대기행렬길이 예측 (Predicting a Queue Length Using a Deep Learning Model at Signalized Intersections)

  • 나다혁;이상수;조근민;김호연
    • 한국ITS학회 논문지
    • /
    • 제20권6호
    • /
    • pp.26-36
    • /
    • 2021
  • 본 연구는 영상검지기에서 수집되는 정보를 활용하여 딥러닝 기반으로 대기행렬길이를 예측하는 모형을 개발하였다. 그리고 통계적 기법인 다중회귀 모형을 추정하여 평균절대오차와 평균제곱근오차의 두 지표를 이용하여 비교·평가하였다. 다중회귀분석 결과, 시간, 요일, 점유율, 버스 교통량이 유효한 변수로 도출되었고, 이 중에서 독립변수들의 종속변수에 대한 영향력은 점유율이 가장 큰 것으로 나타났다. 딥러닝 최적 모형은 은닉층이 4겹, Look Back이 6으로 결정되었고, 평균절대오차와 평균제곱근오차가 6.34와 8.99로 나타났다. 그리고 두 모형을 평가한 결과, 다중회귀 모형과 딥러닝 모형의 평균절대오차는 각각 13.65와 6.44, 평균제곱근오차는 각각 19.10과 9.11로 계산되었다. 이는 딥러닝 모형이 다중회귀 모형과 비교하여 평균절대오차가 52.8%, 평균제곱근오차는 52.3% 감소된 결과이다.

비선형 회귀 분석을 이용한 부유식 해양 구조물의 중량 추정 모델 연구 (A Study on the Weight Estimation Model of Floating Offshore Structures using the Non-linear Regression Analysis)

  • 서성호;노명일;신현경
    • 대한조선학회논문집
    • /
    • 제51권6호
    • /
    • pp.530-538
    • /
    • 2014
  • The weight estimation of floating offshore structures such as FPSO, TLP, semi-Submersibles, Floating Offshore Wind Turbines etc. in the preliminary design, is one of important measures of both construction cost and basic performance. Through both literature investigation and internet search, the weight data of floating offshore structures such as FPSO and TLP was collected. In this study, the weight estimation model was suggested for FPSO. The weight estimation model using non-linear regression analysis was established by fixing independent variables based on this data and the multiple regression analysis was introduced into the weight estimation model. Its reliability was within 4% of error rate.

수계 상류 관측 수위자료를 이용한 하류 홍수위 예측기법 (Forecasting Technique of Downstream Water Level using the Observed Water Level of Upper Stream)

  • 김상문;최병웅;이남주
    • Ecology and Resilient Infrastructure
    • /
    • 제7권4호
    • /
    • pp.345-352
    • /
    • 2020
  • 최근 하천범람에 따른 피해를 최소화하기 위해서는 대피를 위한 선행시간을 확보하는 것이 매우 중요하다. 본 연구에서는 현재 하천에서 측정되고 있는 수위 관측 자료를 이용하여 이상호우 발생시 하류의 수위를 예측하였다. 수위 예측을 위해 다중회귀모형 및 인공신경망 모형을 섬강시험유역에 적용하였다. 다중회귀모형 및 인공신경망 모형의 학습에는 섬강시험유역의 2002년부터 2010년까지의 수위 관측 자료를 이용하였으며, 학습된 모형을 이용하여 발생 가능한 수위를 예측하였다. 모의 결과 인공신경망 수위예측모형의 결정계수는 0.991 - 0.999로 나타났으며, 다중회귀수위예측 모형의 결정계수는 0.945 - 0.990로 나타나 인공신경망을 이용한 수위예측모형이 다중회귀모형보다 좀 더 나은 예측 결과를 나타내는 것을 확인할 수 있었다. 본 연구결과는 향후 하천에서 선행시간을 확보한 홍수 예보 구축에 활용할 수 있을 것으로 판단된다.