• Title/Summary/Keyword: multiple parallel manifold

Search Result 5, Processing Time 0.016 seconds

Experimental Study on Wave Attenuating Effect of a Pneumatic Breakwater by Using a Multiple Parallel Manifold (다중 병렬 분기관을 이용한 압축공기 방파제의 소파효과에 관한 실험적 연구)

  • KIM JONG-WOOK;Shin Hyun-Soo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.257-262
    • /
    • 2004
  • A series of preliminary model tests are performed to find out the wave attenuating effect of the pneumatic breakwater of environment friendly type, which is a bubble screen generated by releasing compressed air from a submerged multiple parallel manifold Rising bubbles induce vertical current, which produces horizontal currents flowing away from the bubble-screen area in both directions. Near bottom, the corresponding currents flow toward the bubble screen, thus completing the circulation pattern. The surface current moving against the direction of wave propagation causes some attenuation of the waves. It becomes more effective as the relative depth (d/ L) increases (short-period waves in deep water). With the same air-discharge, the multiple parallel manifold can be more effective for the attenuation of longer waves through optimum arrangement of manifold number. installation depth, manifold gap, etc. The pneumatic breakwater will give a wide utilization as a device for protecting harbor facilities and as a simple, mobile breakwater.

  • PDF

ON 3-DIMENSIONAL NORMAL ALMOST CONTACT METRIC MANIFOLDS SATISFYING CERTAIN CURVATURE CONDITIONS

  • De, Uday Chand;Mondal, Abul Kalam
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.265-275
    • /
    • 2009
  • The object of the present paper is to study 3-dimensional normal almost contact metric manifolds satisfying certain curvature conditions. Among others it is proved that a parallel symmetric (0, 2) tensor field in a 3-dimensional non-cosympletic normal almost contact metric manifold is a constant multiple of the associated metric tensor and there does not exist a non-zero parallel 2-form. Also we obtain some equivalent conditions on a 3-dimensional normal almost contact metric manifold and we prove that if a 3-dimensional normal almost contact metric manifold which is not a ${\beta}$-Sasakian manifold satisfies cyclic parallel Ricci tensor, then the manifold is a manifold of constant curvature. Finally we prove the existence of such a manifold by a concrete example.

SOME RESULTS ON ALMOST KENMOTSU MANIFOLDS WITH GENERALIZED (k, µ)'-NULLITY DISTRIBUTION

  • De, Uday Chand;Ghosh, Gopal
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1289-1301
    • /
    • 2019
  • In the present paper, we prove that if there exists a second order parallel tensor on an almost Kenmotsu manifold with generalized $(k,{\mu})^{\prime}$-nullity distribution and $h^{\prime}{\neq}0$, then either the manifold is isometric to $H^{n+1}(-4){\times}{\mathbb{R}}^n$, or, the second order parallel tensor is a constant multiple of the associated metric tensor of $M^{2n+1}$ under certain restriction on k, ${\mu}$. Besides this, we study Ricci soliton on an almost Kenmotsu manifold with generalized $(k,{\mu})^{\prime}$-nullity distribution. Finally, we characterize such a manifold admitting generalized Ricci soliton.

Second Order Parallel Tensor on Almost Kenmotsu Manifolds

  • Venkatesha, Venkatesha;Naik, Devaraja Mallesha;Vanli, Aysel-Turgut
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.191-203
    • /
    • 2021
  • Let M be an almost Kenmotsu manifold of dimension 2n + 1 having non-vanishing ��-sectional curvature such that trℓ > -2n - 2. We prove that any second order parallel tensor on M is a constant multiple of the associated metric tensor and obtained some consequences of this. Vector fields keeping curvature tensor invariant are characterized on M.

Paracontact Metric (k, 𝜇)-spaces Satisfying Certain Curvature Conditions

  • Mandal, Krishanu;De, Uday Chand
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.1
    • /
    • pp.163-174
    • /
    • 2019
  • The object of this paper is to classify paracontact metric ($k,{\mu}$)-spaces satisfying certain curvature conditions. We show that a paracontact metric ($k,{\mu}$)-space is Ricci semisymmetric if and only if the metric is Einstein, provided k < -1. Also we prove that a paracontact metric ($k,{\mu}$)-space is ${\phi}$-Ricci symmetric if and only if the metric is Einstein, provided $k{\neq}0$, -1. Moreover, we show that in a paracontact metric ($k,{\mu}$)-space with k < -1, a second order symmetric parallel tensor is a constant multiple of the associated metric tensor. Several consequences of these results are discussed.