• 제목/요약/키워드: multiple objective optimization

검색결과 237건 처리시간 0.029초

실험계획법과 수리적방법을 이용한 이산설계 공간에서의 다목적 최적설계 (Multi-objective Optimization in Discrete Design Space using the Design of Experiment and the Mathematical Programming)

  • 이동우;백석흠;이경영;조석수;주원식
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2150-2158
    • /
    • 2002
  • A recent research and development has the requirement for the optimization to shorten design time of modified or new product model and to obtain more precise engineering solution. General optimization problem must consider many conflicted objective functions simultaneously. Multi-objective optimization treats the multiple objective functions and constraints with design change. But, real engineering problem doesn't describe accurate constraint and objective function owing to the limit of representation. Therefore this study applies variance analysis on the basis of structure analysis and DOE to the vertical roller mill fur portland cement and proposed statistical design model to evaluate the effect of structural modification with design change by performing practical multi-objective optimization considering mass, stress and deflection.

TOPSIS와 콤플렉스법에 의한 사출성형품의 다속성 강건설계 (Robust Design for Multiple Quality Attributes in Injection Molded Parts by the TOPSIS and Complex Method)

  • 박종천;김기범;김경모
    • 한국정밀공학회지
    • /
    • 제18권12호
    • /
    • pp.116-123
    • /
    • 2001
  • An automated injection molding design methodology has been developed to optimize multiple quality attributes, which are usually in conflict with each other, in injection molded parts. For the optimization, commercial CAE simulation tools and optimization techniques are integrated into the methodology. To decal with the multiple objective problem the relative closeness computed in TOPSIS(Technique for Order Preference by Similarity to Ideal Solution) is used as a performance measurement index for optimization multiple part defects. To attain robustness against process variation, Taguchi's quadratic loss function is introduced in the TOPSIS. Also, the modified complex method is used as an optimization tool to optimize objective function. The verification of the developed design methodology was carried out on simulation software with an actual model. Applied to production this methodology will be useful to companies in reducing their product development time and enhancing their product quality.

  • PDF

다목적 유전알고리듬을 이용한 시스템 분해 기법 (System Decomposition Technique using Multiple Objective Genetic Algorithm)

  • 박형욱;김민수;최동훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.170-175
    • /
    • 2001
  • The design cycle associated with large engineering systems requires an initial decomposition of the complex system into design processes which are coupled through the transference of output data. Some of these design processes may be grouped into iterative subcycles. In analyzing or optimizing such a coupled system, it is essential to determine the best order of the processes within these subcycles to reduce design cycle time and cost. This is accomplished by decomposing large multidisciplinary problems into several multidisciplinary analysis subsystems (MDASS) and processing it in parallel. This paper proposes new strategy for parallel decomposition of multidisciplinary problems to improve design efficiency by using the multiple objective genetic algorithm (MOGA), and a sample test case is presented to show the effects of optimizing the sequence with MOGA.

  • PDF

단일 실행의 빠른 근사해 기법과 반복 실행의 최적화 기법을 이용한 이산형 시스템의 시뮬레이션 연구 (Simulation Study of Discrete Event Systems using Fast Approximation Method of Single Run and Optimization Method of Multiple Run)

  • 박경종;이영해
    • 대한산업공학회지
    • /
    • 제32권1호
    • /
    • pp.9-17
    • /
    • 2006
  • This paper deals with a discrete simulation optimization method for designing a complex probabilistic discrete event simulation. The developed algorithm uses the configuration algorithm that can change decision variables and the stopping algorithm that can end simulation in order to satisfy the given objective value during single run. It tries to estimate an auto-regressive model for evaluating correctly the objective function obtained by a small amount of output data. We apply the proposed algorithm to M/M/s model, (s, S) inventory model, and known-function problem. The proposed algorithm can't always guarantee the optimal solution but the method gives an approximate feasible solution in a relatively short time period. We, therefore, show the proposed algorithm can be used as an initial feasible solution of existing optimization methods that need multiple simulation run to search an optimal solution.

전역 최적화 문제의 효율적인 해결을 위한 근사최적화 기법 (An Efficient Heuristic Algorithm of Surrogate-Based Optimization for Global Optimal Design Problems)

  • 이세정
    • 한국CDE학회논문집
    • /
    • 제17권5호
    • /
    • pp.375-386
    • /
    • 2012
  • Most engineering design problems require analyses or simulations to evaluate objective functions. However, a single simulation can take many hours or even days to finish for many real world problems. As a result, design optimization becomes impossible since they require hundreds or thousands of simulation evaluations. The surrogate-based optimization (SBO) strategy became a remedy for such computationally expensive analyses and simulations. A surrogate-based optimization strategy has been developed in this study in order to improve global optimization performance. The strategy is a heuristic algorithm and it exploits not only multiple surrogates, but also multiple optimizers. Multiple optimizations of multiple surrogate models yield multiple candidate design points of optima. During the sequential sampling process, the algorithm ranks candidate design points, selects the points as many as specified, and builds the improved surrogate model. Various mathematical functions with different numbers of design variables are chosen to compare the proposed method with the other most recent algorithm, MSEGO. The proposed method shows superior performance to the other method.

다목적 유전 알고리즘을 이용한 쌍대반응표면최적화 (Dual Response Surface Optimization using Multiple Objective Genetic Algorithms)

  • 이동희;김보라;양진경;오선혜
    • 대한산업공학회지
    • /
    • 제43권3호
    • /
    • pp.164-175
    • /
    • 2017
  • Dual response surface optimization (DRSO) attempts to optimize mean and variability of a process response variable using a response surface methodology. In general, mean and variability of the response variable are often in conflict. In such a case, the process engineer need to understand the tradeoffs between the mean and variability in order to obtain a satisfactory solution. Recently, a Posterior preference articulation approach to DRSO (P-DRSO) has been proposed. P-DRSO generates a number of non-dominated solutions and allows the process engineer to select the most preferred solution. By observing the non-dominated solutions, the DM can explore and better understand the trade-offs between the mean and variability. However, the non-dominated solutions generated by the existing P-DRSO is often incomprehensive and unevenly distributed which limits the practicability of the method. In this regard, we propose a modified P-DRSO using multiple objective genetic algorithms. The proposed method has an advantage in that it generates comprehensive and evenly distributed non-dominated solutions.

다수의 QoS 갖는 멀티캐스트 라우팅을 위한 다목적 유전자 알고리즘 (Multiple Objective Genetic Algorithms for Multicast Routing with Multi-objective QoS)

  • 이윤구;한치근
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (1)
    • /
    • pp.511-513
    • /
    • 2003
  • 멀티미디어 서비스의 증가로 다양한 QoS(Quality of Service) 파라미터를 보장하는 멀티캐스트 라우팅 알고리즘이 필요하게 되었다. 이러한 멀티캐스트 라우팅에서 고려해야 하는 각각의 QoS 파리미터와 비용과의 관계는 Trade-off 관계에 있으며, 이들을 동시에 최적화하는 멀티캐스트 라우팅 문제는 다목적 최적화 문제(Multi-Objective Optimization Problem: MOOP)에 속하는 어려운 문제이다. 다목적 최적화 문제의 목표는 다양한 파레토 최적해(Pareto Optimal Solution)를 찾는데 있으며, 이를 해결하기 위해서 본 논문에서는 다목적 유전자 알고리즘(Multiple Objective Genetic Algorithms: MOGA)을 적용하였다.

  • PDF

Personalized Web Service Recommendation Method Based on Hybrid Social Network and Multi-Objective Immune Optimization

  • Cao, Huashan
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.426-439
    • /
    • 2021
  • To alleviate the cold-start problem and data sparsity in web service recommendation and meet the personalized needs of users, this paper proposes a personalized web service recommendation method based on a hybrid social network and multi-objective immune optimization. The network adds the element of the service provider, which can provide more real information and help alleviate the cold-start problem. Then, according to the proposed service recommendation framework, multi-objective immune optimization is used to fuse multiple attributes and provide personalized web services for users without adjusting any weight coefficients. Experiments were conducted on real data sets, and the results show that the proposed method has high accuracy and a low recall rate, which is helpful to improving personalized recommendation.

Optimal design of multiple tuned mass dampers for vibration control of a cable-supported roof

  • Wang, X.C.;Teng, Q.;Duan, Y.F.;Yun, C.B.;Dong, S.L.;Lou, W.J.
    • Smart Structures and Systems
    • /
    • 제26권5호
    • /
    • pp.545-558
    • /
    • 2020
  • A design method of a Multiple Tuned Mass Damper (MTMD) system is presented for wind induced vibration control of a cable-supported roof structure. Modal contribution analysis is carried out to determine the dominating modes of the structure for the MTMD design. Two MTMD systems are developed for two most dominating modes. Each MTMD system is composed of multiple TMDs with small masses spread at multiple locations with large responses in the corresponding mode. Frequencies of TMDs are distributed uniformly within a range around the dominating frequencies of the roof structure to enhance the robustness of the MTMD system against uncertainties of structural frequencies. Parameter optimizations are carried out by minimizing objective functions regarding the structural responses, TMD strokes, robustness and mass cost. Two optimization approaches are used: Single Objective Approach (SOA) using Sequential Quadratic Programming (SQP) with multi-start method and Multi-Objective Approach (MOA) using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The computation efficiency of the MOA is found to be superior to the SOA with consistent optimization results. A Pareto optimal front is obtained regarding the control performance and the total weight of the TMDs, from which several specific design options are proposed. The final design may be selected based on the Pareto optimal front and other engineering factors.

A multi-objective optimization framework for optimally designing steel moment frame structures under multiple seismic excitations

  • Ghasemof, Ali;Mirtaheri, Masoud;Mohammadi, Reza Karami;Salkhordeh, Mojtaba
    • Earthquakes and Structures
    • /
    • 제23권1호
    • /
    • pp.35-57
    • /
    • 2022
  • This article presents a computationally efficient framework for multi-objective seismic design optimization of steel moment-resisting frame (MRF) structures based on the nonlinear dynamic analysis procedure. This framework employs the uniform damage distribution philosophy to minimize the weight (initial cost) of the structure at different levels of damage. The preliminary framework was recently proposed by the authors based on the single excitation and the nonlinear static (pushover) analysis procedure, in which the effects of record-to-record variability as well as higher-order vibration modes were neglected. The present study investigates the reliability of the previous framework by extending the proposed algorithm using the nonlinear dynamic design procedure (optimization under multiple ground motions). Three benchmark structures, including 4-, 8-, and 12-story steel MRFs, representing the behavior of low-, mid-, and high-rise buildings, are utilized to evaluate the proposed framework. The total weight of the structure and the maximum inter-story drift ratio (IDRmax) resulting from the average response of the structure to a set of seven ground motion records are considered as two conflicting objectives for the optimization problem and are simultaneously minimized. The results of this study indicate that the optimization under several ground motions leads to almost similar outcomes in terms of optimization objectives to those are obtained from optimization under pushover analysis. However, investigation of optimal designs under a suite of 22 earthquake records reveals that the damage distribution in buildings designed by the nonlinear dynamic-based procedure is closer to the uniform distribution (desired target during the optimization process) compared to those designed according to the pushover procedure.