• Title/Summary/Keyword: multiple model estimation

Search Result 625, Processing Time 0.027 seconds

Speech Enhancement Based on Mixture Hidden Filter Model (HFM) Under Nonstationary Noise (혼합 은닉필터모델 (HFM)을 이용한 비정상 잡음에 오염된 음성신호의 향상)

  • 강상기;백성준;이기용;성굉모
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.387-393
    • /
    • 2002
  • The enhancement technique of noise signal using mixture HFM (Midden Filter Model) are proposed. Given the parameters of the clean signal and noise, noisy signal is modeled by a linear state-space model with Markov switching parameters. Estimation of state vector is required for estimating original signal. The estimation procedure is based on mixture interacting multiple model (MIMM) and the estimator of speech is given by the weighted sum of parallel Kalman filters operating interactively. Simulation results showed that the proposed method offers performance gains relative to the previous results with slightly increased complexity.

An interactive multiple model method to identify the in-vessel phenomenon of a nuclear plant during a severe accident from the outer wall temperature of the reactor vessel

  • Khambampati, Anil Kumar;Kim, Kyung Youn;Hur, Seop;Kim, Sung Joong;Kim, Jung Taek
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.532-548
    • /
    • 2021
  • Nuclear power plants contain several monitoring systems that can identify the in-vessel phenomena of a severe accident (SA). Though a lot of analysis and research is carried out on SA, right from the development of the nuclear industry, not all the possible circumstances are taken into consideration. Therefore, to improve the efficacy of the safety of nuclear power plants, additional analytical studies are needed that can directly monitor severe accident phenomena. This paper presents an interacting multiple model (IMM) based fault detection and diagnosis (FDD) approach for the identification of in-vessel phenomena to provide the accident propagation information using reactor vessel (RV) out-wall temperature distribution during severe accidents in a nuclear power plant. The estimation of wall temperature is treated as a state estimation problem where the time-varying wall temperature is estimated using IMM employing three multiple models for temperature evolution. From the estimated RV out-wall temperature and rate of temperature, the in-vessel phenomena are identified such as core meltdown, corium relocation, reactor vessel damage, reflooding, etc. We tested the proposed method with five different types of SA scenarios and the results show that the proposed method has estimated the outer wall temperature with good accuracy.

The NF-l6D VISTA Simulation System

  • Siouris, George M.
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.114-123
    • /
    • 2002
  • Called VISTA (Variable-stability In-flight Simulator Test Aircraft), the one-of-a-kind NF-l6D has a simulation system that can mimic several aircraft. Though housed in an F-l6 Fighting Falcon airframe, VISTA can also act like the F-15 Eagle or the Navy's F-14 Tomcat. More importantly, such flexibility allows for improved training and consolidation of some sorties. Consequently USAF Test Pilot School students will have an opportunity to learn how to test future integrated cockpits. In this paper we will use the multiple model adaptive estimation (MMAE) and the multiple model adaptive controller (MMAC) techniques to model the aircraft's flight control system containing the longitudinal and lateral-directional axes. Single and dual actuator and sensor failures will also be included in the simulation. White Gaussian noise will be included to simulate the effects of atmospheric disturbances.

IMM Method Using Kalman Filter with Fuzzy Gain

  • Noh, Sun-Young;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.234-239
    • /
    • 2006
  • In this paper, we propose an interacting multiple model (IMM) method using intelligent tracking filter with fuzzy gain to reduce tracking errors for maneuvering targets. In the proposed filter, the unknown acceleration input for each sub-model is determined by mismatches between the modelled target dynamics and the actual target dynamics. After a acceleration input is detected, the state estimates for each sub-filter are modified. To modify the accurate estimation, we propose the fuzzy gain based on the relation between the filter residual and its variation. To optimize each fuzzy system, we utilize the genetic algorithm (GA). The tracking performance of the proposed method is compared with those of the adaptive interacting multiple model(AIMM) method and input estimation (IE) method through computer simulations.

Indoor Localization based on Multiple Neural Networks (다중 인공신경망 기반의 실내 위치 추정 기법)

  • Sohn, Insoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.378-384
    • /
    • 2015
  • Indoor localization is becoming one of the most important technologies for smart mobile applications with different requirements from conventional outdoor location estimation algorithms. Fingerprinting location estimation techniques based on neural networks have gained increasing attention from academia due to their good generalization properties. In this paper, we propose a novel location estimation algorithm based on an ensemble of multiple neural networks. The neural network ensemble has drawn much attention in various areas where one neural network fails to resolve and classify the given data due to its' inaccuracy, incompleteness, and ambiguity. To the best of our knowledge, this work is the first to enhance the location estimation accuracy in indoor wireless environments based on a neural network ensemble using fingerprinting training data. To evaluate the effectiveness of our proposed location estimation method, we conduct the numerical experiments using the TGn channel model that was developed by the 802.11n task group for evaluating high capacity WLAN technologies in indoor environments with multiple transmit and multiple receive antennas. The numerical results show that the proposed method based on the NNE technique outperforms the conventional methods and achieves very accurate estimation results even in environments with a low number of APs.

Frequency Domain Channel Estimation for MIMO SC-FDMA Systems with CDM Pilots

  • Kim, Hyun-Myung;Kim, Dongsik;Kim, Tae-Kyoung;Im, Gi-Hong
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.447-457
    • /
    • 2014
  • In this paper, we investigate the frequency domain channel estimation for multiple-input multiple-output (MIMO) single-carrier frequency-division multiple-access (SC-FDMA) systems. In MIMO SC-FDMA, code-division multiplexed (CDM) pilots such as cyclic-shifted Zadoff-Chu sequences have been adopted for channel estimation. However, most frequency domain channel estimation schemes were developed based on frequency-division multiplexing of pilots. We first develop a channel estimation error model by using CDM pilots, and then analyze the mean-square error (MSE) of various minimum MSE (MMSE) frequency domain channel estimation techniques. We show that the cascaded one-dimensional robust MMSE (C1D-RMMSE) technique is complexity-efficient, but it suffers from performance degradation due to the channel correlation mismatch when compared to the two-dimensional MMSE (2D-MMSE) technique. To improve the performance of C1D-RMMSE, we design a robust iterative channel estimation (RITCE) with a frequency replacement (FR) algorithm. After deriving the MSE of iterative channel estimation, we optimize the FR algorithm in terms of the MSE. Then, a low-complexity adaptation method is proposed for practical MIMO SC-FDMA systems, wherein FR is performed according to the reliability of the data estimates. Simulation results show that the proposed RITCE technique effectively improves the performance of C1D-RMMSE, thus providing a better performance-complexity tradeoff than 2D-MMSE.

A Note on a New Two-Parameter Lifetime Distribution with Bathtub-Shaped Failure Rate Function

  • Wang, F.K.
    • International Journal of Reliability and Applications
    • /
    • v.3 no.1
    • /
    • pp.51-60
    • /
    • 2002
  • This paper presents the methodology for obtaining point and interval estimating of the parameters of a new two-parameter distribution with multiple-censored and singly censored data (Type-I censoring or Type-II censoring) as well as complete data, using the maximum likelihood method. The basis is the likelihood expression for multiple-censored data. Furthermore, this model can be extended to a three-parameter distribution that is added a scale parameter. Then, the parameter estimation can be obtained by the graphical estimation on probability plot.

  • PDF

Comparison of Ballistic-Coefficient-Based Estimation Algorithms for Precise Tracking of a Re-Entry Vehicle and its Impact Point Prediction

  • Moon, Kyung Rok;Kim, Tae Han;Song, Taek Lyul
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.363-374
    • /
    • 2012
  • This paper studies the problem of tracking a re-entry vehicle (RV) in order to predict its impact point on the ground. Re-entry target dynamics combined with super-high speed has a complex non-linearity due to ballistic coefficient variations. However, it is difficult to construct a database for the ballistic coefficient of a unknown vehicle for a wide range of variations, thus the reliability of target tracking performance cannot be guaranteed if accurate ballistic coefficient estimation is not achieved. Various techniques for ballistic coefficient estimation have been previously proposed, but limitations exist for the estimation of non-linear parts accurately without obtaining prior information. In this paper we propose the ballistic coefficient ${\beta}$ model-based interacting multiple model-extended Kalman filter (${\beta}$-IMM-EKF) for precise tracking of an RV. To evaluate the performance, other ballistic coefficient model based filters, which are gamma augmented filter, gamma bootstrapped filter were compared and assessed with the proposed ${\beta}$-IMM-EKF for precise tracking of an RV.

Multiple Homographies Estimation using a Guided Sequential RANSAC (가이드된 순차 RANSAC에 의한 다중 호모그래피 추정)

  • Park, Yong-Hee;Kwon, Oh-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.7
    • /
    • pp.10-22
    • /
    • 2010
  • This study proposes a new method of multiple homographies estimation between two images. With a large proportion of outliers, RANSAC is a general and very successful robust parameter estimator. However it is limited by the assumption that a single model acounts for all of the data inliers. Therefore, it has been suggested to sequentially apply RANSAC to estimate multiple 2D projective transformations. In this case, because outliers stay in the correspondence data set through the estimation process sequentially, it tends to progress slowly for all models. And, it is difficult to parallelize the sequential process due to the estimation order by the number of inliers for each model. We introduce a guided sequential RANSAC algorithm, using the local model instances that have been obtained from RANSAC procedure, which is able to reduce the number of random samples and deal simultaneously with multiple models.

Spatial Selectivity Estimation for Intersection region Information Using Cumulative Density Histogram

  • Kim byung Cheol;Moon Kyung Do;Ryu Keun Ho
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.721-725
    • /
    • 2004
  • Multiple-count problem is occurred when rectangle objects span across several buckets. The Cumulative Density (CD) histogram is a technique which solves multiple-count problem by keeping four sub-histograms corresponding to the four points of rectangle. Although it provides exact results with constant response time, there is still a considerable issue. Since it is based on a query window which aligns with a given grid, a number of errors may be occurred when it is applied to real applications. In this paper, we proposed selectivity estimation techniques using the generalized cumulative density histogram based on two probabilistic models: (1) probabilistic model which considers the query window area ratio, (2) probabilistic model which considers intersection area between a given grid and objects. In order to evaluate the proposed methods, we experimented with real dataset and experimental results showed that the proposed technique was superior to the existing selectivity estimation techniques. The proposed techniques can be used to accurately quantify the selectivity of the spatial range query on rectangle objects.

  • PDF