• Title/Summary/Keyword: multiple mobile robots

Search Result 132, Processing Time 0.022 seconds

Dynamics of Interacting Multiple Autonomous Mobile Robots (복수의 자율 이동 로보트 상호간의 동역학)

  • Lee, Suck-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.3
    • /
    • pp.308-315
    • /
    • 1991
  • This paper deals with the global dynamic behavior of multiple autonomous mobile robots with suggested navigation strategies within unbounded and bounded spatial domain. We derive some navigation strategies of robots wirh complete detectability with finite range to reach their goal states without collision which is motivated by Coulomb's law regarding repulsive and attractive forces between electrical charges. An analysis of the dynamic behavior of the interacting robots with the suggested navigation strategies under the assumption that communication is not permissible between robots is made and some examples are illustrated by computer simulation. The convergence of robot motions to their goal states under certain conditions is established by considering their global dynamic behavior even when some objects are close to their goal points.

  • PDF

Cooperative Localization for Multiple Mobile Robots using Constraints Propagation Techniques on Intervals (제약 전파 기법을 적용한 다중 이동 로봇의 상호 협동 위치 추정)

  • Jo, Kyoung-Hwan;Jang, Choul-Soo;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.273-283
    • /
    • 2008
  • This article describes a cooperative localization technique of multiple robots sharing position information of each robot. In case of conventional methods such as EKF, they need to linearization process. Consequently, they are not able to guarantee that their result is range containing true value. In this paper, we propose a method to merge the data of redundant sensors based on constraints propagation techniques on intervals. The proposed method has a merit guaranteeing true value. Especially, we apply the constraints propagation technique fusing wheel encoders, a gyro, and an inexpensive GPS receiver. In addition, we utilize the correlation between GPS data in common workspace to improve localization performance for multiple robots. Simulation results show that proposed method improve considerably localization performance of multiple robots.

Localization Method for Multiple Robots Based on Bayesian Inference in Cognitive Radio Networks (인지 무선 네트워크에서의 베이지안 추론 기반 다중로봇 위치 추정 기법 연구)

  • Kim, Donggu;Park, Joongoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.2
    • /
    • pp.104-109
    • /
    • 2016
  • In this paper, a localization method for multiple robots based on Bayesian inference is proposed when multiple robots adopting multi-RAT (Radio Access Technology) communications exist in cognitive radio networks. Multiple robots are separately defined by primary and secondary users as in conventional mobile communications system. In addition, the heterogeneous spectrum environment is considered in this paper. To improve the performance of localization for multiple robots, a realistic multiple primary user distribution is explained by using the probabilistic graphical model, and then we introduce the Gibbs sampler strategy based on Bayesian inference. In addition, the secondary user selection minimizing the value of GDOP (Geometric Dilution of Precision) is also proposed in order to overcome the limitations of localization accuracy with Gibbs sampling. Via the simulation results, we can show that the proposed localization method based on GDOP enhances the accuracy of localization for multiple robots. Furthermore, it can also be verified from the simulation results that localization performance is significantly improved with increasing number of observation samples when the GDOP is considered.

A Study on the Cooperative Control of Multiple Mobile Robots Using a Hierarchical Structure (계층적 구조에 의한 다중이동로봇의 협동제어에 관한 연구)

  • Park, Sung-Kyu;Lee, Kee-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.95-98
    • /
    • 2001
  • A hierarchical structure for the cooperative control of multiple mobile robots using coordinates of objects obtained from vision system is proposed. The order-level perceives environments represented by workspace sets. The algorithm selects an object to be moved using an object discrimination part and determines the robot actions. The action-level generates a trajectory of each wheel velocity of robot. The simulation results show the effectiveness of the proposed algorithm.

  • PDF

Seamless Routing and Cooperative Localization of Multiple Mobile Robots for Search and Rescue Application

  • Lee, Chang-Eun;Im, Hyun-Ja;Lim, Jeong-Min;Cho, Young-Jo;Sung, Tae-Kyung
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.262-272
    • /
    • 2015
  • In particular, for a practical mobile robot team to perform such a task as that of carrying out a search and rescue mission in a disaster area, the network connectivity and localization have to be guaranteed even in an environment where the network infrastructure is destroyed or a Global Positioning System is unavailable. This paper proposes the new collective intelligence network management architecture of multiple mobile robots supporting seamless network connectivity and cooperative localization. The proposed architecture includes a resource manager that makes the robots move around and not disconnect from the network link by considering the strength of the network signal and link quality. The location manager in the architecture supports localizing robots seamlessly by finding the relative locations of the robots as they move from a global outdoor environment to a local indoor position. The proposed schemes assuring network connectivity and localization were validated through numerical simulations and applied to a search and rescue robot team.

Smooth Formation Navigation of Multiple Mobile Robots for Avoiding Moving Obstacles

  • Chen Xin;Li Yangmin
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.466-479
    • /
    • 2006
  • This paper addresses a formation navigation issue for a group of mobile robots passing through an environment with either static or moving obstacles meanwhile keeping a fixed formation shape. Based on Lyapunov function and graph theory, a NN formation control is proposed, which guarantees to maintain a formation if the formation pattern is $C^k,\;k\geq1$. In the process of navigation, the leader can generate a proper trajectory to lead formation and avoid moving obstacles according to the obtained information. An evolutionary computational technique using particle swarm optimization (PSO) is proposed for motion planning so that the formation is kept as $C^1$ function. The simulation results demonstrate that this algorithm is effective and the experimental studies validate the formation ability of the multiple mobile robots system.

A Hierachical Controller for Soccer Robots (축구로봇을 위한 계층적 제어기)

  • Lee, In-Jae;Baek, Seung-Min;Sohn, Kyung-Oh;Kuc, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.803-812
    • /
    • 2000
  • In this paper we introduce a model based centralized hierarchical controller for cooperative team of soccerplaying multiple mobile robots. The hierarchical controller is composed of high-level and low-level controllers. Using the coordinates information of objects from the vision are simple models of multiple mobile tobots on the playground. Subsequently, the high level controller selects and action model corresponding to the perceived state transition model and generates subgoal and goal-velocity, from which the low level controller generates trajectory of each wheel velocity of the robot. This two layered simplicity. The feasubility of the control strategy has been demonstrated in an implementation for real soccer games at a MiroSot league.

  • PDF

Design of Multiple Floors Autonomous Navigation System Based On ROS Enabled Mobile Robots (ROS 기반 모바일 로봇을위한 다중 층 자율 주행 시스템 설계)

  • Ahmed, Hamdi A.;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.55-57
    • /
    • 2018
  • In Simultaneous Localization and Mapping (SLAM), the robot acquire its map of environment while simultaneously localize itself relative to the map. Now a day, a map acquired by the mobile robots limit to specific area, in an indoor environment and cannot able to navigate autonomous between different floors. We propose a design that could able to overcome this issue in order to navigate multiple floors with one end goal mission to a target destination in the course of autonomous navigation. In this research, we consider all the floors have identical structural arrangement. Internet of Things (IoT) playing crucial role in bridging between "things" and Robot Operating System (ROS) enabled mobile robots.

  • PDF

Implementation of a Graphic Man-Machine Interface for a Teleoperation of Multiple Mobile Robots (다수 이동로봇의 원격제어를 위한 Graphic Man-Machine Interface의 구현)

  • 김한영;한헌수
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.712-715
    • /
    • 1999
  • The goal of this paper is to provide a Graphic man-machine interface that can be used to control multiple robots simultaneously. The proposed GUI scheme gave emphasis on making multiple robots Perform the cooperative works, maintaining a given formation. It controls multiple robots in two different modes. : a group mode and a individual mode. In the group mode, a common goal position and formation are delivered to individual robots at the same time, and in the individual mode one robot is selected. o increase the efficiency of the interface, a time scheduler is provided. The experimental results are included.

  • PDF

A Study on Cooperative Behaviors of Multiple Autonomous Robots (복수의 자율이동로봇이 협조운동에 관한 연구)

  • Jung, W.G.;Choi, Y.S.;Seo, H.C.;Lee, S.G.;Lee, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3030-3032
    • /
    • 1999
  • This Paper proposes a fuzzy algorithm for cooperative behaviors of multiple autonomous mobile robots. Each robot makes decision of his behavior based on the information obtained by infrared sensors to measure the position and velocities of other robots. The effectiveness of the proposed algorithm is shown by some computer simulation where a group of mobile robots encircles with equi-interval.

  • PDF