• Title/Summary/Keyword: multiple materials

Search Result 1,943, Processing Time 0.027 seconds

Numerical modeling and analysis of RC frames subjected to multiple earthquakes

  • Abdelnaby, Adel E.;Elnashai, Amr S.
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.957-981
    • /
    • 2015
  • Earthquakes occur as a cluster in many regions around the world where complex fault systems exist. The repeated shaking usually induces accumulative damage to affected structures. Damage accumulation in structural systems increases their level of degradation in stiffness and also reduces their strength. Many existing analytical tools of modeling RC structures lack the salient damage features that account for stiffness and strength degradation resulting from repeated earthquake loading. Therefore, these tools are inadequate to study the response of structures in regions prone to multiple earthquakes hazard. The objective of this paper is twofold: (a) develop a tool that contains appropriate damage features for the numerical analysis of RC structures subjected to more than one earthquake; and (b) conduct a parametric study that investigates the effects of multiple earthquakes on the response of RC moment resisting frame systems. For this purpose, macroscopic constitutive models of concrete and steel materials that contain the aforementioned damage features and are capable of accurately capturing materials degrading behavior, are selected and implemented into fiber-based finite element software. Furthermore, finite element models that utilize the implemented concrete and steel stress-strain hysteresis are developed. The models are then subjected to selected sets of earthquake sequences. The results presented in this study clearly indicate that the response of degrading structural systems is appreciably influenced by strong-motion sequences in a manner that cannot be predicted from simple analysis. It also confirms that the effects of multiple earthquakes on earthquake safety can be very considerable.

Numerical analysis of heat transfer for architectural structure composed of multiple materials in ISO10211 (복합재질로 구성된 건축 구조체의 열전달 수치해석을 위한 ISI10211모델계산)

  • Lee, Juhee;Park, JiHo;Lee, YongJun
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.159-166
    • /
    • 2016
  • Purpose: The architectural structures in the engineering field include more than one material, and the heat transfer through these multiple materials becomes complicated. More or less, the analytic solutions obtained by the hand calculation can provide the limited information of heat transfer phenomena. However, the engineers have generally been forced to obtain reliable results than those of the hand calculation. The numerical calculation such as a finite volume methods with the unstructured grid system is only the suitable means of the analysis for the complex and arbitrary domains that consists of multiple materials. In this study, a new numerical code is developed to provide temperature distributions in the multiple material domains, and the results of this code are compared with the validation cases in ISO10211. Method: Finite volume methods with an unstructured grid is employed. In terms of numerical methods, the heat transfer conduction coefficient is not defined on the surface of the cell between different material cells. The heat transfer coefficient is properly defined to accurately mimic the heat transfer through the surface. The boundary conditions of heat flux considering radiation or heat convection are also developed. Result: The comparison between numerical results and ISO 10211 cases. We are confirmed that the numerical method provides the proper temperature distributions, and the heat transfer equation and its boundary conditions are developed properly.

Phase Transformation of Two-Dimensional Transition Metal Dichalcogenides

  • Kim, Jaemin;Lee, Zonghoon
    • Applied Microscopy
    • /
    • v.48 no.2
    • /
    • pp.43-48
    • /
    • 2018
  • Transition metal dichalcogenide (TMD) materials have distinctive structures in comparison with other two-dimensional materials. TMD materials' structure is held together by van der Waals and covalent intralayer interactions; consequently, TMDs exhibit multiple phases and properties depending on their structure. This article reviews some of the research currently being undertaken to control TMD phases to utilize their different properties. This review introduces some trials for changing the phase of TMDs.

Development of a Material Mixing Method using ESO (진화적 구조 최적화를 이용한 재료 혼합법의 개발)

  • 한석영;이수경;신민석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.259-264
    • /
    • 2003
  • This paper suggests a material mixing method to mix several materials in a structure. This method is based on ESO(Evolutionary Structural Optimization), which has been used to optimize topology of only one material structure. In this study, two criterions for material transformation and element removal are implemented for mixing several materials in a structure. Optimal topology for a multiple material structure can be obtained through repetitive application of the two criterions at each iteration. Two practical design examples of a short cantilever are presented to illustrate validity of the suggested material mixing method. It is found that the suggested method works very well and a multiple material structure has more stiffness than one material structure has under the same mass.

  • PDF

Dynamic analysis for delaminated composites based on finite element (다중 층간분리부가 내재된 복합재 평판의 유한요소 진동해석)

  • 오진호;조맹효;김준식
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.143-146
    • /
    • 2003
  • A finite element based on the efficient higher order zig-zag theory with multiple delaminations Is developed to refine the predictions of frequency and mode shapes. Displacement field through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. The layer-dependent degrees of freedom of displacement fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions including delaminated interfaces as well as free hounding surface conditions of transverse shear stresses. Thus the proposed theory is not only accurate but also efficient. This displacement field can systematically handle the number, shape, size, and locations of delaminations. Throught the dynamic version of variational approach, the dynamic equilibrium equations and variationally consistent boundary conditions are obtained. Through the natural frequency analysis and time response analysis of composite plate with multiple delaminations, the accuracy and efficiency of the present finite element are demonstrated. The present finite element is suitable in the predictions of the dynamic response of the thick composite plate with multiple delaminations.

  • PDF

A Study on the Ultra Lean Combustion Characteristics of the BMW N53 GDI Engine (BMW N53 직접분사식 가솔린 엔진의 초희박 연소특성에 관한 연구)

  • Kim, Hong-Suk;Oh, Jin-Woo;Kim, Sung-Dea;Park, Chul-Wong;Lee, Seok-Whan;Jeong, Young-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.82-89
    • /
    • 2011
  • Ultra lean combustion with stratified air-fuel mixture is one of the methods that can improve fuel economy of gasoline engines. The aim of this study is to show that how much fuel economy is improved and what are differences in engine control of the ultra lean combustion compared with stoichiometric combustion. In this study, the BMW N53 GDI engine, which is one of ultra lean combustion GDI engines introduced in the market recently, was tested at various engine operating conditions. Results indicated that fuel consumption rates were improved by 11.9~25.8% by the ultra lean combustion compared with stoichiometric combustion. It was also found that multiple fuel injection, multiple spark, early intake valve opening, and large vlave overlap duration were the features of the ultra lean combustion for combustion stability and emission improvement.

Influence of multiple holes on the magnetic properties of YBCO superconductor

  • Oh, W.S.;Oh, S.K.;Jang, G.E.;Kim, C.J.;Han, Y.H.;Jung, S.Y.;Sung, T.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.2
    • /
    • pp.15-19
    • /
    • 2009
  • Bulk $YBa_2Cu_3O_{7-{\delta}}$ (YBCO) superconductor was manufactured with the top-seeded melt grown method. The 9, 16, and 25 holes, as small as 0.7mm in diameter, parallel to the c-axis were mechanically drilled. Magnetic flux mapping and levitation force were measured and compared to estimate the influence of multiple holes on the magnetic properties of YBCO superconductor at 77K. According to the measurements, the maximum magnetic flux density obtained from the plain sample was 2.48kG, while the maximum magnetic flux density of the sample with 25 holes was low as around 2.29kG. The levitation force measured on the sample with 9 holes increased from 91N to 105N. The levitation force measured on the samples with 9 holes is relatively higher than the plain sample without any holes. In this case, increase of the levitation force in the perforated samples could be explained by enhancement of the cooling efficiency more effectively. We investigated that the magnetic properties of YBCO superconductor were strongly influenced by the artificial holes.