Multiple quantile regression that simultaneously estimate several conditional quantiles of response given covariates can provide a comprehensive information about the relationship between the response and covariates. Some quantile estimates can cross if conditional quantiles are separately estimated; however, this violates the definition of the quantile. To tackle this issue, multiple quantile regression with non-crossing constraints have been developed. In this paper, we carry out a comparison study on several popular methods for non-crossing multiple linear quantile regression to provide practical guidance on its application.
Communications for Statistical Applications and Methods
/
v.19
no.2
/
pp.293-301
/
2012
Quantile regression proposed by Koenker and Bassett (1978) is a statistical technique that estimates conditional quantiles. The advantage of using quantile regression is the robustness in response to large outliers compared to ordinary least squares(OLS) regression. A regression tree approach has been applied to OLS problems to fit flexible models. Loh (2002) proposed the GUIDE algorithm that has a negligible selection bias and relatively low computational cost. Quantile regression can be regarded as an analogue of OLS, therefore it can also be applied to GUIDE regression tree method. Chaudhuri and Loh (2002) proposed a nonparametric quantile regression method that blends key features of piecewise polynomial quantile regression and tree-structured regression based on adaptive recursive partitioning. Lee and Lee (2006) investigated wage determinants in the Korean labor market using the Korean Labor and Income Panel Study(KLIPS). Following Lee and Lee, we fit three kinds of quantile regression tree models to KLIPS data with respect to the quantiles, 0.05, 0.2, 0.5, 0.8, and 0.95. Among the three models, multiple linear piecewise quantile regression model forms the shortest tree structure, while the piecewise constant quantile regression model has a deeper tree structure with more terminal nodes in general. Age, gender, marriage status, and education seem to be the determinants of the wage level throughout the quantiles; in addition, education experience appears as the important determinant of the wage level in the highly paid group.
Objectives: This study aimed to identify regional differences in the high-risk drinking rate among yearly alcohol users in Korea and to identify relevant regional factors for each quintile using quantile regression. Methods: Data from 227 counties surveyed by the 2017 Korean Community Health Survey (KCHS) were analyzed. The analysis dataset included secondary data extracted from the Korean Statistical Information Service and data from the KCHS. To identify regional factors related to the high-risk drinking rate among yearly alcohol users, quantile regression was conducted by dividing the data into 10%, 30%, 50%, 70%, and 90% quantiles, and multiple linear regression was also performed. Results: The current smoking rate, perceived stress rate, crude divorce rate, and financial independence rate, as well as one's social network, were related to the high-risk drinking rate among yearly alcohol users. The quantile regression revealed that the perceived stress rate was related to all quantiles except for the 90% quantile, and the financial independence rate was related to the 50% to 90% quantiles. The crude divorce rate was related to the high-risk drinking rate among yearly alcohol users in all quantiles. Conclusions: The findings of this study suggest that local health programs for high-risk drinking are needed in areas with high local stress and high crude divorce rates.
Journal of the Korean Data and Information Science Society
/
v.28
no.3
/
pp.533-545
/
2017
Quantile regression models provide a variety of useful statistical information by estimating the conditional quantile function of the response variable. However, the traditional linear quantile regression model can lead to the distorted and incorrect results when analysing real data having a nonlinear relationship between the explanatory variables and the response variables. Furthermore, as the complexity of the data increases, it is required to analyse multiple response variables simultaneously with more sophisticated interpretations. For such reasons, we propose a multivariate quantile regression tree model. In this paper, a new split variable selection algorithm is suggested for a multivariate regression tree model. This algorithm can select the split variable more accurately than the previous method without significant selection bias. We investigate the performance of our proposed method with both simulation and real data studies.
In this study, single and multiple linear regression model were used to derive the relationship between precipitation and altitude, latitude and longitude in Jejudo. The single linear regression analysis was focused on whether orographic effect was existed in Jejudo by annual average precipitation, and the multiple linear regression analysis on whether orographic effect was applied to each duration and return period of quantile from regional frequency analysis by index flood method. As results of the regression analysis, it shows the relationship between altitude and precipitation strongly form a linear relationship as the length of duration and return period increase. The multiple linear regression precipitation estimates(which used altitude, latitude, and longitude information) were found to be more reasonable than estimates obtained using altitude only or altitude-latitude and altitude-longitude. Especially, as results of spatial distribution analysis by kriging method using GIS, it also provides realistic estimates for precipitation that the precipitation was occurred the southeast region as real climate of Jejudo. However, the accuracy of regression model was decrease which derived a short duration of precipitation or estimated high region precipitation even had long duration. Consequently the other factor caused orographic effect would be needed to estimate precipitation to improve accuracy.
Minkeun Kim;Chulyong Park;Joon Sakong;Shinhee Ye;So young Son;Kiook Baek
Annals of Occupational and Environmental Medicine
/
v.35
/
pp.23.1-23.14
/
2023
Background: Exposure to heavy metals is a public health concern worldwide. Previous studies on the association between heavy metal exposure and neurobehavioral functions in children have focused on single exposures and clinical manifestations. However, the present study evaluated the effects of heavy metal complex exposure on subclinical neurobehavioral function using a Korean Computerized Neurobehavior Test (KCNT). Methods: Urinary mercury, lead, cadmium analyses as well as symbol digit substitution (SDS) and choice reaction time (CRT) tests of the KCNT were conducted in children aged between 10 and 12 years. Reaction time and urinary heavy metal levels were analyzed using partial correlation, linear regression, Bayesian kernel machine regression (BKMR), the weighted quantile sum (WQS) regression and quantile G-computation analysis. Results: Participants of 203 SDS tests and 198 CRT tests were analyzed, excluding poor cooperation and inappropriate urine sample. Partial correlation analysis revealed no association between neurobehavioral function and exposure to individual heavy metals. The result of multiple linear regression shows significant positive association between urinary lead, mercury, and CRT. BMKR, WQS regression and quantile G-computation analysis showed a statistically significant positive association between complex urinary heavy metal concentrations, especially lead and mercury, and reaction time. Conclusions: Assuming complex exposures, urinary heavy metal concentrations showed a statistically significant positive association with CRT. These results suggest that heavy metal complex exposure during childhood should be evaluated and managed strictly.
Purpose: The purpose of this study was to determine gender differences in effects of self-efficacy, exercise benefits and barriers, and demographic factors on the physical activity. Methods: Seventy sedentary office workers, 35 male and 35 female, from a major airline company, completed a questionnaire from March 28 to April 5, 2012. Steps and body mass indices were measured using a CW-700/701 (Yamax) pedometer and Inbody 720 (Biospace), respectively. Data were analyzed using t-test, $x^2$-test, multiple linear regression, and simultaneous quantile regression. Results: For male workers, exercise self-efficacy had a significant effect on physical activity, but only when respondents were at 10%(3,431 steps/day, p=.018) and 25%(4,652 steps/day, p=.044) of the physical activity distribution. For female workers, marital status was significantly related to physical activity, but only when respondents were at 10% (3,537 steps/day, p=.013) and 25%(3,862 steps/day, p=.014) of the physical activity distribution. Conclusion: Quantile regression highlights the heterogeneous effect of physical activity determinants among office workers. Therefore intervention strategies for increasing physical activity should be tailed to genders as well as physical activity levels.
This study examined the effect of private educational expenditure on adolescent depression and somatic symptoms. The sample comprised 2,589 first-grade middle-school students who completed the 2018 Korea Children and Youth Panel Survey. Data were analyzed using ANOVA (the generalized linear model), multiple regression, and quantile regression analysis. The principal results were as follows. First, 15.15% of adolescents reported depression symptoms, and 15.57% reported somatic symptoms. Second, levels of depression were significantly different among classes with a different level of private educational expenditure. Third, depression level was significantly negatively associated with private educational expenditure, in that the higher the private educational expenditure, the lower the depression level. Fourth, the effect of private educational expenditure on adolescent depression was significant at the 70~90th quantile regression, suggesting that private educational expenditure was associated with a higher level of depression symptoms. The results indicate that private education was viewed as a consumption commodity rather than a complementary educational practice or investment in human capital. Private education as a commodity might induce the highly developed and costly private education market. In turn, there is an increased financial burden for education at one end of the social-economic continuum and depression caused by relative deprivation at the other end.
Purpose - The primary purpose of this study is to verify whether the target set out by the International Maritime Organization (IMO) for reducing carbon emissions from ships can be achieved by quantitatively analyzing the trends in technological advances of fuel oil consumption in the container shipping market. To achieve this purpose, several scenarios are designed considering various options such as eco-friendly fuels, low-speed operation, and the growth in ship size. Design/methodology - The vessel size and speed used in prior studies are utilized to estimate the fuel oil consumption of container ships and the pace of technological progress and Energy Efficiency Design Index (EEDI) regulations are added. A database of 5,260 container ships, as of 2019, is used for multiple linear regression and quantile regression analyses. Findings - The fuel oil consumption of vessels is predominantly affected by their speed, followed by their size, and the annual technological progress is estimated to be 0.57%. As the quantile increases, the influence of ship size and pace of technological progress increases, while the influence of speed and coefficient of EEDI variables decreases. Originality/value - The conservative estimation of carbon emission drawn by a quantitative analysis of the technological progress concerning the fuel efficiency of container vessels shows that it is not possible to achieve IMO targets. Therefore, innovative efforts beyond the current scope of technological progress are required.
Journal of the Korean Data and Information Science Society
/
v.28
no.6
/
pp.1457-1469
/
2017
Private education expenses is one of the key issues in Korea and there have been many discussions about it. Academically, most of previous researches for private education expenses have used multiple regression linear model based on ordinary least squares (OLS) method. However, if the data do not satisfy the basic assumptions of the OLS method such as the normality and homoscedasticity, there is a problem with the reliability of estimations of parameters. In this case, quantile regression model is preferred to OLS model since it does not depend on the assumptions of nonnormality and heteroscedasticity for the data. In the present study, the data from a survey on private education expenses, conducted by Statistics Korea in 2015 has been analyzed for investigation of the impacting factors for private education expenses. Since the data do not satisfy the OLS assumptions, quantile regression model has been employed in Bayesian approach by using gibbs sampling method. The analysis results show that the gender of the student, parent's age, and the time and cost of participating after school are not significant. Household income is positively significant in proportion to the same size for all levels (quantiles) of private education expenses. Spending on private education in Seoul is higher than other regions and the regional difference grows as private education expenditure increases. Total time for private education and student's achievement have positive effect on the lower quantiles than the higher quantiles. Education level of father is positively significant for midium-high quantiles only, but education level of mother is for all but low quantiles. Participating after school is positively significant for the lower quantiles but EBS textbook cost is positively significant for the higher quantiles.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.