• Title/Summary/Keyword: multiple input single output (MISO)

Search Result 40, Processing Time 0.021 seconds

Performance of Receive Diversity UWB Systems with Pulse Amplitude and Position Modulation

  • Kim, Sang-Choon
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.498-501
    • /
    • 2010
  • In this paper, we extend ultra-wideband (UWB) single input single output (SISO) systems with a hybrid pulse amplitude and position modulation (PAPM) to single input multiple output (SIMO) systems using receive antenna diversity. The performance of a rake receive diversity combining scheme for UWB SIMO systems with a PAPM is examined in a log-normal multipath fading channel and also compared with that of a time-switched transmit diversity (TSTD) multiple input single output (MISO) system. It is seen that as the number of receive antennas increases, the receive diversity combining system improves the error performance. It is shown that the TSTD UWB MISO systems offer the performance equivalent to the receive diversity combining scheme for SIMO systems.

Trends and Advances in Multi-Cell MISO/MIMO Technologies

  • Seong, Yeong-Cheol;Park, Ju-Ho;Kim, Dong-Geon
    • Information and Communications Magazine
    • /
    • v.29 no.8
    • /
    • pp.34-41
    • /
    • 2012
  • 본 고에서는 LTE-Advanced 및 Beyond 4G 이동 통신 시스템에서 셀 경계 지역 간섭 문제 해결 및 전송률 향상을 위해 핵심기술로 간주되는 다중 안테나를 사용한 다중 셀 기지국 협력전송 방법에 대해 살펴본다. 특히, 다중 셀 통신 환경을 다중입력 단일출력(multiple-input single-output. MISO) 및 다중입력 다중출력 (multiple-input multiple-output, MIMO) 무선 간섭 채널로 모델링할 수 있는데, 이러한 MISO 및 MIMO 간섭 채널에서의 협력 및 분산 통신 방법에 관해 진행된 최근의 주요 연구 결과들을 소개한다.

3D Beamforming Techniques in Multi-Cell MISO Downlink Active Antenna Systems for Large Data Transmission (대용량 데이터 전송을 위한 다중 셀 MISO 하향 능동 안테나 시스템에서 3D 빔포밍 기법)

  • Kim, Taehoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2298-2304
    • /
    • 2015
  • In this paper, we provide a new approach which optimizes the vertical tilting angle of the base station for multi-cell multiple-input single-output (MISO) downlink active antenna systems (AAS). Instead of the conventional optimal algorithm which requires an exhaustive search, we propose simple and near optimal algorithms. First, we represent a large system approximation based vertical beamforming algorithm which is applied to the average sum rate by using the random matrix theory. Next, we suggest a signal-to-leakage-and-noise ratio (SLNR) based vertical beamforming algorithm which simplifies the optimization problem considerably. In the simulation results, we demonstrate that the performance of the proposed algorithms is near close to the exhaustive search algorithm with substantially reduced complexity.

SINR loss and user selection in massive MU-MISO systems with ZFBF

  • Hu, Mengshi;Chang, Yongyu;Zeng, Tianyi;Wang, Bin
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.637-647
    • /
    • 2019
  • Separating highly correlated users can reduce the loss caused by spatial correlation (SC) in multiuser multiple-input multiple-output (MU-MIMO) systems. However, few accurate analyses of the loss caused by SC have been conducted. In this study, we define signal-to-interference-plus-noise ratio (SINR) loss to characterize it in multiuser multiple-input single-output (MU-MISO) systems, and use coefficient of correlation (CoC) to describe the SC between users. A formula is deduced to show the accurate relation between SINR loss and CoC. Based on this relation, we propose a user selection method that utilizes CoC to minimize the average SINR loss of users in massive MU-MISO systems. Simulation results verify the correctness of the relation and show that the proposed user selection method is very effective at reducing the loss caused by SC in massive MU-MISO systems.

Performance Evaluation of a DVB-T2 Receiver with Iterative Demapping and Decoding in MISO Transmission Mode (MISO 전송 모드에서 Iterative Demapping and Decoding을 사용하는 DVB-T2 수신기의 성능분석)

  • Paik, Jong-Ho;Seo, Jeong-Wook;Kang, Ming-Goo;Jeon, Eun-Sung;Kim, Dong-Ku
    • Journal of Internet Computing and Services
    • /
    • v.12 no.3
    • /
    • pp.111-117
    • /
    • 2011
  • In this paper, the BER(Bit Error Rate) performance of a DVB-T2(Second Generation Digital Terrestrial Television Broadcasting System) in MISO(Multiple Input Single Output) transmission mode is evaluated by the computer simulation. In the DVB-T2 receiver, an IDD(Iterative Demapping and Decoder) technique is employed that exchanges extrinsic information between the demapper and the LDPC decoder. Simulation results show that the IDD-based DVB-T2 receiver in MISO transmission mode provides 2dB gain at BER of $10^{-4}$ but suffer from the frequency offsets between transmit antennas.

Margin Adaptive Optimization in Multi-User MISO-OFDM Systems under Rate Constraint

  • Wei, Chuanming;Qiu, Ling;Zhu, Jinkang
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.112-117
    • /
    • 2007
  • In this paper, we focus on the total transmission power minimization problem for downlink beamforming multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems while ensuring each user's QoS requirement. Although the linear integer programming (LIP) solution we formulate provides the performance upper bound of the margin adaptive (MA) optimization problem, it is hard to be implemented in practice due to its high computational complexity. By regarding each user's equivalent channel gain as approximate independent values and using iterative descent method, we present a heuristic MA resource allocation algorithm. Simulation results show that the proposed algorithm efficiently converges to the local optimum, which is very close to the performance of the optimal LIP solution. Compared with existing space division multiple access (SDMA) OFDM systems with or without adaptive resource allocation, the proposed algorithm achieves significant performance improvement by exploiting the frequency diversity and multi-user diversity in downlink multiple-input single-output (MISO) OFDM systems.

On Mobility-Supporting Transmit Beamforming in MISO FDD Wireless Systems

  • Lee, Woo-Kwon;Sepko, Brian J.
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.308-315
    • /
    • 2008
  • When operating in frequency-division duplex (FDD) mode, transmit beamforming in multiple-input single-output (MISO) wireless communication systems typically requires accurate knowledge of downlink channel state information (CSI) at the transmitter. In practical FDD systems, obtaining such downlink CSI at the transmitter is challenging, if not impractical. To circumvent such challenge and support user mobility, we present a new method for transmit beamforming based on simple beam-control commands (BCCs) in MISO FDD mobile systems. We then numerically evaluate the effects of BCC errors in terms of transmit power efficiency, system capacity, and outage probability.

Improving BER Performance of IEEE 802.15.4 with Alamouti Scheme in MIMO System (MIMO 시스템에서 ALAMOUTI 기법과 IEEE 802.15.4의 BER 성능 개선)

  • Halim, Eddy Hartono;Shin, Soo-Yong
    • Journal of Internet Computing and Services
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • This paper proposes a technique for applying space-time block coding (STBC) - Alamouti scheme on Multiple Inputs Multiple Output (MIMO) system based on IEEE 802.15.4 standard. It is applied to IEEE 802.15.4 standard in $2{\times}1$ MISO and $2{\times}2$ MIMO systems. Simulation is performed using Matlab and the results are compared with conventional IEEE 802.15.4 approaches, Single Input Single Output (SISO) system and switching diversity $1{\times}2$ Single Input Multiple Output (SIMO) system. The simulations show that applied Alamouti scheme gave better Bit Error Rate (BER) performance compared to combined IEEE 802.15.4 with switching diversity and SISO system.

Performance of Distributed MISO Systems Using Cooperative Transmission with Antenna Selection

  • Park, Jong-Hyun;Kim, Jae-Won;Sung, Won-Jin
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.163-174
    • /
    • 2008
  • Performance of downlink transmission strategies exploiting cooperative transmit diversity is investigated for distributed multiple-input single-output (MISO) systems, for which geographically distributed remote antennas (RA) in a cell can either communicate with distinct mobile stations (MS) or cooperate for a common MS. Statistical characteristics in terms of the signal-to-interference-plus-noise ratio (SINR) and the achievable capacity are analyzed for both cooperative and non-cooperative transmission schemes, and the preferred mode of operation for given channel conditions is presented using the analysis result. In particular, we determine an exact amount of the maximum achievable gain in capacity when RAs for signal transmission are selected based on the instantaneous channel condition, by deriving a general expression for the SINR of such antenna selection based transmission. For important special cases of selecting a single RA for non-cooperative transmission and selecting two RAs for cooperative transmission among three RAs surrounding the MS, closed-form formulas are presented for the SINR and capacity distributions.

Transmit Eigen-beamformer with Space-Time Block Code for MISO Systems (MISO 시스템에서 시공간 블록 코드를 이용한 송신 고유빔 형성 기법)

  • 김홍철;신요안;이원철
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.37-40
    • /
    • 2002
  • 본 논문에서는 MISO(Multiple-Input Single-Output) 시스템에서 시공간 블록 부호(Space-Time Block Code; STBC)와 전송 고유빔 형성기의 결합을 통해 전송 다이버시티 이득과 빔형성 이득을 동시에 추구하는 기법에 대해 설명하였다. 빔형성 이득을 대한 성능을 분석하기 위해 채널간 상관 정도에 따라 모의실험을 통해 성능을 분석하였다. 성능 분석 결과 일반적인 STBC 기법을 적용하는 기법보다 우수한 성능을 보임을 확인하였다

  • PDF