• Title/Summary/Keyword: multiple input processing

Search Result 256, Processing Time 0.028 seconds

Video switching system for multiple channel network camera processing of 1 channel video server (1채널 비디오 서버의 다중 채널 네트워크 카메라 처리를 위한 영상 스위칭 시스템)

  • Son, O-Seop;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.76-79
    • /
    • 2010
  • Internet of the Web-based Home Securiy, ITS (Intelligent Traffic System), the tourism industry, production field, etc In many fields, using a network camera imaging system has been spotlighted and Accordingly the demand for network cameras is growing rapidly. in order to control it according to the video server complex has a costly problem. In this paper, according to an increasing number of cameras cost and complexity of the video server problems to solve information from video cameras through multi-channel input single-channel multiplex and the fact that switching is handled and Also, the system automatically switches the image data is implemented.

  • PDF

Selection of Main Factors by Experimental Analysis for Profile Blast Machining Based on Microparticle Blasting Equipment with a Two-Axis Sequence Control Stage (2축 시퀀스 제어 스테이지와 미세입자 분사장치에 의한 형상 분사가공시 실험계획법에 의한 주요인자 검출)

  • Hwang, Chul-Woong;Lee, Sea-Han;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.64-69
    • /
    • 2020
  • To determine the effective factors for microparticle blasting with precise sequence position control in the x-axis and y-axis directions, we conducted a statistical experimental analysis of blasted square shapes by considering five condition factors. The control input and output were operated simultaneously by rotation-linear motion conversion and fine particles were blasted onto the aluminum specimen by precise position control driving using multiple execution codes. The micro-driving device used for processing was capable of microparticle blasting and of controlling the system through contact with a limit sensor at high speed and a two-degree-of-freedom driving mechanism. Our experiments were conducted on 1,050 specimens of pure aluminum (containing <1% of other elements). The effects of several factors (e.g., particle and nozzle diameters, blasting pressure, and federate and blasting cycle numbers) on the surface roughness and blasted surface's depth were verified through a statistical experimental analysis by applying the dispersion analysis method. This statistical analysis revealed that the nozzle diameter, the blasting pressure, and the blasting cycle number were the dominant factors.

Connection stiffness reduction analysis in steel bridge via deep CNN and modal experimental data

  • Dang, Hung V.;Raza, Mohsin;Tran-Ngoc, H.;Bui-Tien, T.;Nguyen, Huan X.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.495-508
    • /
    • 2021
  • This study devises a novel approach, namely quadruple 1D convolutional neural network, for detecting connection stiffness reduction in steel truss bridge structure using experimental and numerical modal data. The method is developed based on expertise in two domains: firstly, in Structural Health Monitoring, the mode shapes and its high-order derivatives, including second, third, and fourth derivatives, are accurate indicators in assessing damages. Secondly, in the Machine Learning literature, the deep convolutional neural networks are able to extract relevant features from input data, then perform classification tasks with high accuracy and reduced time complexity. The efficacy and effectiveness of the present method are supported through an extensive case study with the railway Nam O bridge. It delivers highly accurate results in assessing damage localization and damage severity for single as well as multiple damage scenarios. In addition, the robustness of this method is tested with the presence of white noise reflecting unavoidable uncertainties in signal processing and modeling in reality. The proposed approach is able to provide stable results with data corrupted by noise up to 10%.

Convolutional neural network-based data anomaly detection considering class imbalance with limited data

  • Du, Yao;Li, Ling-fang;Hou, Rong-rong;Wang, Xiao-you;Tian, Wei;Xia, Yong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.63-75
    • /
    • 2022
  • The raw data collected by structural health monitoring (SHM) systems may suffer multiple patterns of anomalies, which pose a significant barrier for an automatic and accurate structural condition assessment. Therefore, the detection and classification of these anomalies is an essential pre-processing step for SHM systems. However, the heterogeneous data patterns, scarce anomalous samples and severe class imbalance make data anomaly detection difficult. In this regard, this study proposes a convolutional neural network-based data anomaly detection method. The time and frequency domains data are transferred as images and used as the input of the neural network for training. ResNet18 is adopted as the feature extractor to avoid training with massive labelled data. In addition, the focal loss function is adopted to soften the class imbalance-induced classification bias. The effectiveness of the proposed method is validated using acceleration data collected in a long-span cable-stayed bridge. The proposed approach detects and classifies data anomalies with high accuracy.

Multiple Pedestrians Detection and Tracking using Color Information from a Moving Camera (이동 카메라 영상에서 컬러 정보를 이용한 다수 보행자 검출 및 추적)

  • Lim, Jong-Seok;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.11B no.3
    • /
    • pp.317-326
    • /
    • 2004
  • This paper presents a new method for the detection of multiple pedestrians and tracking of a specific pedestrian using color information from a moving camera. We first extract motion vector on the input image using BMA. Next, a difference image is calculated on the basis of the motion vector. The difference image is converted to a binary image. The binary image has an unnecessary noise. So, it is removed by means of the proposed noise deletion method. Then, we detect pedestrians through the projection algorithm. But, if pedestrians are very adjacent to each other, we separate them using RGB color information. And we track a specific pedestrian using RGB color information in center region of it. The experimental results on our test sequences demonstrated the high efficiency of our approach as it had shown detection success ratio of 97% and detection failure ratio of 3% and excellent tracking.

Design and Implementation of Conversion System Between ISO/IEC 10646 and Multi-Byte Code Set (ISO/IEC 10646과 멀티바이트 코드 세트간의 변환시스템의 설계 및 구현)

  • Kim, Chul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.319-324
    • /
    • 2018
  • In this paper, we designed and implemented a code conversion method between ISO/IEC 10646 and the multi-byte code set. The Universal Multiple-Octet Coded Character Set(UCS) provides codes for more than 65,000 characters, huge increase over ASCII's code capacity of 128 characters. It is applicable to the representation, transmission, interchange, processing, storage, input and presentation of the written form of the language throughout the world. Therefore, it is so important to guide on code conversion methods to their customers during customer systems are migrated to the environment which the UCS code system is used and/or the current code systems, i.e., ASCII PC code and EBCDIC host code, are used with the UCS together. Code conversion utility including the mapping table between the UCS and IBM new host code is shown for the purpose of the explanation of code conversion algorithm and its implementation in the system. The programs are successfully executed in the real system environments and so can be delivered to the customer during its migration stage from the UCS to the current IBM code system and vice versa.

Widely-Linear Beamforming and RF Impairment Suppression in Massive Antenna Arrays

  • Hakkarainen, Aki;Werner, Janis;Dandekar, Kapil R.;Valkama, Mikko
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.383-397
    • /
    • 2013
  • In this paper, the sensitivity of massive antenna arrays and digital beamforming to radio frequency (RF) chain in-phase quadrature-phase (I/Q) imbalance is studied and analyzed. The analysis shows that massive antenna arrays are increasingly sensitive to such RF chain imperfections, corrupting heavily the radiation pattern and beamforming capabilities. Motivated by this, novel RF-aware digital beamforming methods are then developed for automatically suppressing the unwanted effects of the RF I/Q imbalance without separate calibration loops in all individual receiver branches. More specifically, the paper covers closed-form analysis for signal processing properties as well as the associated radiation and beamforming properties of massive antenna arrays under both systematic and random RF I/Q imbalances. All analysis and derivations in this paper assume ideal signals to be circular. The well-known minimum variance distortionless response (MVDR) beamformer and a widely-linear (WL) extension of it, called WL-MVDR, are analyzed in detail from the RF imperfection perspective, in terms of interference attenuation and beamsteering. The optimum RF-aware WL-MVDR beamforming solution is formulated and shown to efficiently suppress the RF imperfections. Based on the obtained results, the developed solutions and in particular the RF-aware WL-MVDR method can provide efficient beamsteering and interference suppressing characteristics, despite of the imperfections in the RF circuits. This is seen critical especially in the massive antenna array context where the cost-efficiency of individual RF chains is emphasized.

Seismic Pre-processing and AVO analysis for understanding the gas-hydrate structure (가스 하이드레이트 부존층의 구조 파악을 위한 탄성파 전산처리 및 AVO 분석)

  • Chung Bu-Heung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.634-637
    • /
    • 2005
  • Multichannel seismic data acquired in Ulleung Basin of East Sea for gas hydrate exploration. The seismic sections of this area show strong BSR(bottom simulating reflections) associated with methane hydrate occurrence in deep marine sediments. Very limited information is available from deep sea drilling as the risk of heating and destabilizing the initial hydrate conditions during the processing of drilling is considerably high. Not so many advanced status of gas hydrate exploration in Korea, the most of information of gas hydrate characteristics and properties are inferred from seismic reflection data. In this study, The AVO analysis using the long offset seismic data acquired in Ulleung Basin used to explain the characteristics and structure of gas hydrate. It is used primarily P-wave velocity accessible from seismic data. To make a good quality of AVO analysis input data, seismic preprocessing including 'true gain correction', 'source signature deconvolution', twice velocity analysis and some kinds of multiple rejection and enhancing the signal to noise ratio processes is carried out very carefully. The results of AVO analysis, the eight kinds of AVO attributes are estimated basically and some others of AVO attributes are evaluated for interpretation of AVO analysis additionally. The impedance variation at the boundary of gas hydrate and free gas is estimated for investing the BSR characteristics and properties. The complex analysis is performed also to verifying the amplitude variation and phase shift occurrence at BSR. Type III AVO anomaly appearance at saturated free gas area is detected on BSR. It can be an important evidence of gas hydrate deposition upper the BSR.

  • PDF

Virtual-Parallel Multistage Interconnection Network with multiple-paths (다중경로를 갖는 가상병렬 다단계 상호연결 네트워크)

  • Kim, Ik-Soo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.1
    • /
    • pp.67-75
    • /
    • 1997
  • This paper presents a virtual-parallel multistage interconnection network (MIN) which provides multipath between processor and memory module. The proposed virtual-parallel MIN network which uses $m{\times}1$ mutiplexer at the input switching block, $1{\times}m$ demultiplexer at the output switching block and logN-1 switching stages has maximum $2{\times}m$ unique paths between processor and memory module. Because it has multi-redundance paths, a number of processors can connect a specific Also, this new virtual-parallel structured MIN network can reduce packet collision possibility at switching block and it has cost. It shown to improve a performance and to be a very simple structure in comparision with MBSF structured MIN.

  • PDF

Adaptive Upstream Backup Scheme based on Throughput Rate in Distributed Spatial Data Stream System (분산 공간 데이터 스트림 시스템에서 연산 처리율 기반의 적응적 업스트림 백업 기법)

  • Jeong, Weonil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5156-5161
    • /
    • 2013
  • In distributed spatial data stream processing, processed tuples of downstream nodes are replicated to the upstream node in order to increase the utilization of distributed nodes and to recover the whole system for the case of system failure. However, while the data input rate increases and multiple downstream nodes share the operation result of the upstream node, the data which stores to output queues as a backup can be lost since the deletion operation delay may be occurred by the delay of the tuple processing of upstream node. In this paper, the adaptive upstream backup scheme based on operation throughput in distributed spatial data stream system is proposed. This method can cut down the average load rate of nodes by efficient spatial operation migration as it processes spatial temporal data stream, and it can minimize the data loss by fluid change of backup mode. The experiments show the proposed approach can prevent data loss and can decrease, on average, 20% of CPU utilization by node monitoring.