• Title/Summary/Keyword: multiple frequency

Search Result 4,433, Processing Time 0.035 seconds

A Design of Multiple Jammers Localization Algorithm Based on TDOA Method (TDOA기법 기반의 다중 재머 위치 추정 알고리즘 설계)

  • Kang, Hee Won;Lim, Deok Won;Heo, Moon-Beom
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.729-737
    • /
    • 2012
  • In case that multiple jammers are transmitting the signals which are the same type a general algorithm based on TDOA method cannot estimate the positions of multiple jammers because there are many TDOA measurements including true and false values. This paper, therefore, designs a new algorithm based on TDOA method to localize multiple jammers. In this algorithm, TDOA measurements are obtained by rotating the reference sensor, and then the positions of multiple jammers can be estimated by detecting congregated point among the multiple estimated positions from TDOA measurements. Through computer simulations, it is verified that this algorithm localizes the multiple jammers well. The performance of the algorithm are also analysed by changing the distance between sensors and jammer, and sampling frequency.

Access timing offsets-resilient SC-FDMA (접속동기 오차에 강한 SC-FDMA 기법)

  • Kim, Bong-Seok;Choi, Kwonhue
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.26-29
    • /
    • 2012
  • In this paper, we propose a Single Carrier Frequency Division Multiple Access(SC-FDMA) scheme with greatly enhanced tolerance of timing offset among the users. The type of the proposed scheme is similar to code spread Multiple Carrier Direct Spread Code Division Multiple Access(MC DS CDMA). The proposed scheme performs partial Discrete Fourier Transform(DFT) in order to solve high Peak to Average Power Ratio(PAPR) of the MC DS CDMA before Inverse Fast Fourier Transform(IFFT). Exploiting the property Properly Scrambled Walsh-Hadamard(PSW) code has zero correlation despite ${\pm}1$ chip timing offset, the proposed scheme achieves Multiple Access Interference free performance with the timing offset up to ${\pm}1$ OFDM symbol duration with low PAPR. In contrast, the other existing schemes in comparison undergo severe performance degradation even with small timing offset in multipath fading channel.

Multiple-Model Probabilistic Design for Centralized Repetitive Controllers of Multiple Systems (다물체시스템의 중앙집중 연속학습제어 복수모형 확률설계기법)

  • Lee, Soo-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.99-105
    • /
    • 2011
  • This paper presents a method to design a centralized repetitive controller that is robust to variations in the multiple system parameters. The uncertain parameters are specified probabilistically by their probability distribution functions. Instead of working with the distribution functions directly, the centralized repetitive controller is designed from a set of models that are generated from the specified probability functions. With this multiple-model design approach, any number of uncertain parameters that follow any type of distribution functions can be treated. Furthermore, the controller is derived by minimizing a frequency-domain based cost function that produces monotonic convergence of the tracking error as a function of repetition number. Numerical illustrations show how the proposed multiple-model design method produces a repetitive controller that is significantly more robust than an optimal repetitive controller designed from a single nominal model of the multiple system.

Optimal Gator-filter Design for Multiple Texture Image Segmentation (다중 텍스쳐 영상 분할을 위한 최적 가버필터의 설계)

  • Lee, U-Beom;Kim, Uk-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.3
    • /
    • pp.11-22
    • /
    • 2002
  • The design of optimal filter yielding optimal texture feature separation is a most effective technique in many torture analyzing areas, such as perception of surface, object, shape and depth. But, most optimal filter design approaches are restricted to the issue of computational complexity and supervised problems. In this paper, Our proposed method yields new insight into the design of optimal Gabor filters for segmenting multiple texture images. The optimal frequency of Gator filter is turned to the optimal frequency of the distinct texture in frequency domain. In order to show the performance of the designed filters, we have attempted to build a various texture images. Our experimental results show that the performance of the system is very successful.

An Analysis on Resultant Ground Impedance Based on the Potential Interference Of Parallel Ground Rods (전위간섭을 기초로 한 병렬 접지봉의 합성접지임피던스의 분석)

  • Lee, Bok-Hee;Seong, Chang-Hoon;Yang, Soon-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.12
    • /
    • pp.107-112
    • /
    • 2011
  • Multiple ground rods are commonly used to obtain the low ground impedance, but they will not reduce the ground impedance unless the spacings between the ground rods are sufficient. This paper presents the experimental results of frequency-dependent resultant ground impedance of two ground rods in parallel. The resultant ground impedance of two ground rods in parallel were measured as functions of the spacing and length of ground rods and the frequency of test currents and were discussed based on the potential interferences. As a consequence, the frequency-dependent ground impedance of single ground rod and two combined ground rods give capacitive. It was found that the effect of potential interference on the ground impedance is directly associated with the frequency-dependent ground impedance and is strong in low frequency. Also, in order to reduce the increasing rate of resultant ground impedance of two ground rods due to potential interference to within 10(%), two ground rods in parallel will be placed over one rod length apart.

Performance Analysis of CDMA and OFDM on Underwater Acoustic Environments (수중 음향 환경에 따른 CDMA와 OFDM 성능 분석)

  • Lee, Ho Jun;Chung, Jaehak
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.135-142
    • /
    • 2018
  • This paper compares and analyzes advantages and disadvantages of CDMA(code division multiple access) and OFDM(orthogonal frequency division multiplexing) transmission techniques for underwater acoustic channel environments. Computer simulations were carried out in various underwater acoustic channels with varying r.m.s.(root mean square) delay, doppler frequency and the number of multipaths. When r.m.s. delay and doppler frequency are within the tolerance of designed transmission schemes, the computer simulations show that CDMA has better BER performance than that of the OFDM. However, when the doppler frequency exceeds the tolerance, BER performance of the CDMA decreases.

Image Interpolation Using Multiple Neural Networks with Spatial Frequency Characteristic (공간 주파수 특성을 가지는 다중 신경 회로망을 이용한 영상 보간)

  • 우동헌;엄일규;김유신
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.135-141
    • /
    • 2004
  • Image interpolation is an image enlargement method that calculates an empty pixel value using the information of given pixel values. Since a natural image is composed of various spatial frequency components, it is difficult for one method to interpolate pixels with various spatial frequencies. In this paper, we propose an image interpolation method using multiple neural networks with spatial frequency characteristic. Input image is segmented according to spatial frequency by local variance, and each segmented image is interpolated using neural network established for spatial frequency band. The proposed method is applied to line doubling that becomes an important part in image interpolation because of deinterlacing. In simulation the proposed algorithm shows the improved PSNR result compared with conventional algorithms and method using single neural network.

Phase Angle Control in Resonant Inverters with Pulse Phase Modulation

  • Ye, Zhongming;Jain, Praveen;Sen, Paresh
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.332-344
    • /
    • 2008
  • High frequency AC (HFAC) power distribution systems delivering power through a high frequency AC link with sinusoidal voltage have the advantages of simple structure and high efficiency. In a multiple module system, where multiple resonant inverters are paralleled to the high frequency AC bus through connection inductors, it is necessary for the output voltage phase angles of the inverters be controlled so that the circulating current among the inverters be minimized. However, the phase angle of the resonant inverters output voltage can not be controlled with conventional phase shift modulation or pulse width modulation. The phase angle is a function of both the phase of the gating signals and the impedance of the resonant tank. In this paper, we proposed a pulse phase modulation (PPM) concept for the resonant inverters, so that the phase angle of the output voltage can be regulated. The PPM can be used to minimize the circulating current between the resonant inverters. The mechanisms of the phase angle control and the PPM were explained. The small signal model of a PPM controlled half-bridge resonant inverter was analyzed. The concept was verified in a half bridge resonant inverter with a series-parallel resonant tank. An HFAC power distribution system with two resonant inverters connected in parallel to a 500kHz, 28V AC bus was presented to demonstrate the applicability of the concept in a high frequency power distribution system.

Peformance Comparisons of CDMA, OFDM, and MC-CDMA with Inaccurate Channel Estimates and Low-SNR Environments (신호대잡음비가 낮고 부정확한 채널추정값을 가질 때의 CDMA, OFDM, MC-CDMA의 성능 비교)

  • Rim Minjoong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1A
    • /
    • pp.55-61
    • /
    • 2005
  • Mobile communication systems are required not only to support high-data-rate transmissions in favorable channel conditions but also to be able to tolerate hostile environments possibly encountered by cellular communications. This paper compares CDMA(Code Division Multiple Access), OFDM(Orthogonal Frequency Division Multiplexing), and MC-CDMA(Multi-Carrier CDMA)with inaccurate channel estimates and low SNR environments. The equations and simulation results show that the performance losses in CDMA systems due to imprecise channel estimates are not considerable while frequency-hopping of OFDM systems can result in more than l0dB SNR losses. Also, this paper show that frequency-spreading of MC-CDMA can be very helpful for channel compensation performances than frequency-hopping or time-spreading of OFDM.

Adaptive Timing Synchronization Algorithm for WiBro Uplink (WiBro 상향링크를 위한 적응적 시간동기 추정 알고리즘)

  • Kim, Jeong-Been;Jin, Young-Hwan;Kim, Kyung-Soo;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11A
    • /
    • pp.1068-1075
    • /
    • 2006
  • An adaptive ranging technique for Orthogonal Frequency Division Multiple Access(OFDMA) uplink transmission is proposed for timing synchronization of multiple mobile stations located different distances from a base station. By combining the Timing Phase Compensated Frequency Domain Cross-correlation(TPCFDC) and Frequency Domain Differential Cross-correlation(FDDC), the proposed scheme reduces the number of correlators used in ordinary TPCFDC. Repeated initial ranging attempt with the FDDC in the proposed scheme greatly reduces the hardware implementation complexity. Simulation results for ranging success probability and average ranging attempts count show that the proposed algorithm performs similarly with the ordinary TPCFDC even with the 10 times reduced complexity.