• 제목/요약/키워드: multiple deformation

검색결과 266건 처리시간 0.026초

Multiple-Method에 의한 원형구조물 변형측정의 정확도 향상에 관한 연구 (A Study on the Improvement of Accuracy for Deformation Measurement of Circular Structures by Multiple Method)

  • Raymond J. Hintz;Mook, Kang-Joon;Jin, Oh-Won
    • 한국측량학회지
    • /
    • 제6권1호
    • /
    • pp.13-24
    • /
    • 1988
  • 원형 구조물의 표면에 대한 삼차원 위치 결정은 여러 면에서 그 응용이 기대된다. 구조물의 진단을 고려해 볼때 이것은 광범위한 범주에서 하나의 의미있는 Topic이 될 것이며, 이러한 위치 결정을 함에 있어 수렴사진의 활용은 종내의 측량에 비해 많은 이점을 가지고 있다. 본 논문은 Metric과 Non-metric Camera를 이용하여 원사형의 피사체를 수렴사진으로 촬영하고 Bundle-Adjustment에 의해 그 결과를 고찰한 것이다. Bundle-Adjustment에 의한 오차 해석으로부터 표준 오차를 비교함과 아울러 Metric과 Nonmetric Camera로부터 얻은 피사체의 삼차원 좌표도 비교하였다.

  • PDF

이중층 라이너에서 폭발 재료 분포에 따른 변형 특성 수치해석 (Numerical Analysis of Deformation Characteristics in the Double-Layer Liner According to Explosive Material Distribution)

  • 문상호;김시조;이창희;이성
    • 한국군사과학기술학회지
    • /
    • 제19권5호
    • /
    • pp.618-628
    • /
    • 2016
  • The development of new concepts of liners is required in order to effectively neutralize the enemy's attack power concealed in the armored vehicles. A multiple-layer liner is one of possibilities and has a mechanism for explosion after penetrating the target which is known as "Behind Armor Effect." The multiple-layer explosive liner should have sufficient kinetic energy to penetrate the protective structure and explosive material react after target penetration. With this in mind, double-layer liner materials were obtained by cold spray coating methods and these material properties were experimentally characterized and used in this simulation for double-layer liners. In this study, numerical simulations in the three different layer types, i.e., single, A/B, A/B/A in terms of the layer location were verified in terms of finite element mesh sizes and numerical results for the jet tip velocity, kinetic energy, and the corresponding jet deformation characteristics were analysed in detail depending on the structure of layer types.

Web-shear strength of steel-concrete composite beams with prestressed wide flange and hollowed steel webs: Experimental and practical approach

  • Han, Sun-Jin;Kim, Jae Hyun;Choi, Seung-Ho;Heo, Inwook;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.311-321
    • /
    • 2022
  • In the buildings with long spans and high floors, such as logistics warehouses and semiconductor factories, it is difficult to install supporting posts under beams during construction. Therefore, the size of structural members becomes larger inevitably, resulting in a significant increase in construction costs. Accordingly, a prestressed hybrid wide flange (PHWF) beam with hollowed steel webs was developed, which can reduce construction costs by making multiple openings in the web of the steel member embedded in concrete. However, since multiple openings exist and prestress is introduced only into the bottom flange concrete, it is necessary to identify the shear resistance mechanism of the PHWF beam. This study presents experimental shear tests of PHWF beams with hollowed steel webs. Four PHWF beams with cast-in-place (CIP) concrete were fabricated, with key variables being the width and spacing of the steel webs embedded in the concrete and the presence of shear reinforcing bars, and web-shear tests were conducted. The shear behavior of the PHWF beam, including crack patterns, strain behavior of steel webs, and composite action between the prestressed bottom flange and CIP concrete, were measured and analyzed comprehensively. The test results showed that the steel web resists external shear forces through shear deformation when its width is sufficiently large, but as its width decreased, it exerted its shear contribution through normal deformation in a manner similar to that of shear reinforcing bars. In addition, it was found that stirrups placed on the cross section where the steel web does not exist contribute to improving the shear strength and deformation capacity of the member. Based on the shear behavior of the specimens, a straightforward calculation method was proposed to estimate the web-shear strength of PHWF beams with CIP concrete, and it provided a good estimation of the shear strength of PHWF beams, more accurate than the existing code equations.

In situ investigations into mining-induced overburden failures in close multiple-seam longwall mining: A case study

  • Ning, Jianguo;Wang, Jun;Tan, Yunliang;Zhang, Lisheng;Bu, Tengteng
    • Geomechanics and Engineering
    • /
    • 제12권4호
    • /
    • pp.657-673
    • /
    • 2017
  • Preventing water seepage and inrush into mines where close multiple-seam longwall mining is practiced is a challenging issue in the coal-rich Ordos region, China. To better protect surface (or ground) water and safely extract coal from seams beneath an aquifer, it is necessary to determine the height of the mining-induced fractured zone in the overburden strata. In situ investigations were carried out in panels 20107 (seam No. $2-2^{upper}$) and 20307 (seam No. $2-2^{middle}$) in the Gaojialiang colliery, Shendong Coalfield, China. Longwall mining-induced strata movement and overburden failure were monitored in boreholes using digital panoramic imaging and a deep hole multi-position extensometer. Our results indicate that after mining of the 20107 working face, the overburden of the failure zone can be divided into seven rock groups. The first group lies above the immediate roof (12.9 m above the top of the coal seam), and falls into the gob after the mining. The strata of the second group to the fifth group form the fractured zone (12.9-102.04 m above the coal seam) and the continuous deformation zone extends from the fifth group to the ground surface. After mining Panel 20307, a gap forms between the fifth rock group and the continuous deformation zone, widening rapidly. Then, the lower portion of the continuous deformation zone cracks and collapses into the fractured zone, extending the height of the failure zone to 87.1 m. Based on field data, a statistical formula for predicting the maximum height of overburden failure induced by close multiple seam mining is presented.

Investigation of possible causes of sinkhole incident at the Zonguldak Coal Basin, Turkey

  • Genis, Melih;Akcin, Hakan;Aydan, Omer;Bacak, Gurkan
    • Geomechanics and Engineering
    • /
    • 제16권2호
    • /
    • pp.177-185
    • /
    • 2018
  • The subsidence mechanism of ground surface is a complex phenomenon when multiple seam coal mining operations are carried out. Particularly, the coal mining beneath karstic formations causes a very special form of subsidence. The subsidence causes elasto-plastic deformation of the karstic layers and the collapse of cavities leads to dolinization and/or sinkhole formation. In this study, a sinkhole with a depth of 90 m and a width of 25 m formed in Gelik district within the coal-basin of Zonguldak (NW, Turkey) induced by multiple seam coal mining operations in the past has been presented as a case-history together with two-dimensional numerical simulations and InSAR monitoring. The computational results proved that the sinkhole was formed as a result of severe yielding in the close vicinity of the faults in contact with karstic formation due to multiple seam longwall mining at different levels.

응력집중문제의 해석을 위한 적응적 무요소절점법에 관한 연구 (A Meshless Method and its Adaptivity for Stress Concentration Problems)

  • 이상호;전석기;김효진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.16-23
    • /
    • 1997
  • The Reproducing Kernel Particle Method (RKPM), one of the popular meshless methods, is developed and applied to stress concentration problems. Since the meshless methods require only a set of particles (or nodes) and the description of boundaries in their formulation, the adaptivity can be implemented with much more ease than finite element method. In addition, due to its intrinsic property of multiresolution, the shape function of RKPM provides us a new criterion for adaptivity. Recently, this multiple scale Reproducing Kernel Particle Method and its adaptive procedure have been formulated for large deformation problems by the authors. They are also under development for damage materials and localization problems. In this paper the multiple scale RKPM for linear elasticity is presented and the adaptive procedure is applied to stress concentration problems. Therefore, this work may be regarded as the edition of linear elasticity in the complete framework of multiple scale RKPM and the associated adaptivity.

  • PDF

기하학 기술을 이용한 인레이/온레이의 외면 모델링 (An External Surfaces Modeling of Inlay/onlay Using Geometric Techniques)

  • 유관희;하종성
    • 정보처리학회논문지A
    • /
    • 제12A권6호
    • /
    • pp.515-522
    • /
    • 2005
  • 본 논문에서는 부분적으로 파손된 치아의 수복에 사용되는 인레이/온레이 인공치아를 효과적으로 모델링하는 기법을 제안한다. 인레이/온레이는 지대치에 부착되는 내면과 밖으로 들어나는 외면으로 구성된다. 내면은 지대치와의 밀착력을 확보하기 위하여 지대치의 삭제된 표면의 확장된 부분으로 Minkowski sum을 이용하여 모델링된다. 외면을 모델링하기 위해서는 표준치아 모델, 환자 치아 석고모형을 스캔한 메쉬 자료, 환자 치아교합을 측정한 FGP(functionally guided plane) 등 세 가지 정보와 DMFFD(direct manipulation free-form deformation)[19]과 MWD(multiple wires deformation)[17]의 3D 메쉬 변형 기술들을 이용한다. 표준치아 모델은 외면의 기본적인 형태를 결정하기 위하여 사용되는 반면 석고모형 데이터와 FGP는 환자 치아 인접면과 교합면마다 약간 다르지만 정확한 기능에 매우 중요한 고유 특성을 반영하기 위해 사용되는 정보이다. 이러한 정보들을 입력으로 DMFFD 기법과 MWD 기법을 각각 적용하여 인레이/온레이 인접면과 교합면을 메쉬 자료로 자동으로 생성해낸다. 연구된 기법은 치과의사에 의한 요구사항을 반영하여 생성된 메쉬 모델을 가시화하면서 보다 정확하게 인레이/온레이를 디자인할 수 있도록 구현되었다.

FAULT DISPLACEMENT OF WENCHUAN EARTHQUAKE OBSERVED BY ALOS PALSAR

  • Won, Joong-Sun;Jung, Hyung-Sup
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.418-421
    • /
    • 2008
  • Wenchuan earthquake (Mw 7.9) occurred in Sichuan province, China, May 2008 had resulted in a huge fault displacement around the Lungmenshan fault. Preliminary results of the fault displacement observed by ALOS PALSAR interferometry are presented. The surface deformation by the Wenchuan earthquake was reported up to 10m consisting of thrust- and right-slip compnents. A significant reduction in ionospheric density was also reported. Twenty differential interferograms and twenty multiple aperture SAR interferometry (MAI) pairs were produced over four ALOS tracks. It was observed from differential interferograms that i) LOS deformation decreases steadily from northnorthwest of the Longmenshan fault to the fault, ii) the LOS deformation sharply increases at areas around the fault, and iii) the decrease of the LOS deformation is observed from the Longmenshan fault to the south-southeast of the fault. Horizontal movement of the reverse fault displacement can better be observed by MAI technique, and the MAI phases show that i) the south-southeast directional reverse fault displacement (negative along-track deformation for an ascending track) of the north-northwest block gradually increases to the Longmenshan fault, ii) the reverse fault movement of the south-southeast block is sharply reversed to the north-northwest of the fault, and iii) the northnorthwest movement gradually decreases to the south-southeast of fault. Although the Lonmenshan Fault line is a center of earthquake epicenter, the boundary of surface movement exists to the north-northeast of the fault. Since the ionosphere was not stable even forty days after the mainshock, MAI phases were seriously corrupted by ionospheric effect. It is necessary to acquire more data when the ionosphere recovered to a normal state.

  • PDF

고무부품의 유한요소해석을 위한 재료시험 및 비선형 재료물성에 관한 연구 (Mechanical Testing and Nonlinear Material Properties for Finite Element Analysis of Rubber Components)

  • 김완두;김완수;김동진;우창수;이학주
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.848-859
    • /
    • 2004
  • Mechanical testing methods to determine the material constants for large deformation nonlinear finite element analysis were demonstrated for natural rubber. Uniaxial tension, uniaxial compression, equi-biaxial tension and pure shear tests of rubber specimens are performed to achieve the stress-strain curves. The stress-strain curves are obtained after between 5 and 10 cycles to consider the Mullins effect. Mooney and Ogden strain-energy density functions, which are typical form of the hyperelastic material, are determined and compared with each other. The material constants using only uniaxial tension data are about 20% higher than those obtained by any other test data set. The experimental equations of shear elastic modulus on the hardness and maximum strain are presented using multiple regression method. Large deformation finite element analysis of automotive transmission mount using different material constants is performed and the load-displacement curves are compared with experiments. The selection of material constant in large deformation finite element analysis depend on the strain level of component in service.

Sustainable Surface Deformation Related with 2006 Augustine Volcano Eruption in Alaska Measured Using GPS and InSAR Techniques

  • Lee, Seulki;Kim, Sukyung;Lee, Changwook
    • 한국측량학회지
    • /
    • 제34권4호
    • /
    • pp.357-372
    • /
    • 2016
  • Augustine volcano, located along the Aleutian Arc, is one of the most active volcanoes in Alaska and nearby islands, with seven eruptions occurring between 1812 and 2006. This study monitored the surface displacement before and after the most recent 2006 eruption. For analysis, we conducted a time-series analysis on data observed at the permanent GPS(Global Positioning System) observation stations in Augustine Island between 2005 and 2011. According to the surface displacement analysis results based on GPS data, the movement of the surface inflation at the average speed of 2.3 cm/year three months prior to the eruption has been clearly observed, with the post-eruption surface deflation at the speed of 1.6 cm/year. To compare surface displacements measurement by GPS observation, ENVISAT(Environmental satellite) radar satellite data were collected between 2003 and 2010 and processed the SBAS(Small Baseline Subset) method, one of the time-series analysis techniques using multiple InSAR(Interferometric Synthetic Aperture Radar) data sets. This result represents 0.97 correlation value between GPS and InSAR time-series surface displacements. This research has been completed precise surface deformation using GPS and time-series InSAR methods for a detection of precursor symptom on Augustine volcano.