• 제목/요약/키워드: multiple deformation

검색결과 266건 처리시간 0.021초

컴퓨터 그래픽스 변형 기법을 이용한 인레이/온레이 보철물의 효율적인 모델링 (An Efficient Modeling of Inlay/Onlay Prostheses using Computer Graphics Deformation Techniques)

  • 유관희
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제11권2호
    • /
    • pp.1-8
    • /
    • 2005
  • 하나의 치아가 일부 파손되어 수복되어야 할 보철물을 인레이/온레이(Inlay/Onlay)라 한다. 본 논문에서는 3차원 메쉬 기반 모델에서 보다 정확한 인레이/온레이를 효과적으로 모델링하기 위한 기법을 제안한다. 인레이/온레이는 지대치와 접하는 내면과 밖으로 들어나는 외면으로 구성된다. 인레이/온레이의 내면 모델링은 2차원 다각선상의 Minkowski Sum 알고리즘을 이용하여 지대치와의 접합력을 확보한다. 그리고 미리 데이터베이스에 저장된 표준 치아 모델, 치과의사에 의해 만들어진 FGP(functionally guided plane) 및 메쉬의 변형 기법인 DMFFD(direct manipulation free-form deformation) 기법[16]과 MWD(multiple wires deformation) 기법[24]을 이용하여 외면을 모델링한다. 데이터베이스에 저장된 표준 치아는 인레이/온레이 외면의 형태를 결정하기 위해 사용되며, FGP는 환자의 인접면과 교합면의 특성을 반영하기 위해 사용되었다. 마지막으로 3차원 메쉬의 두 변형 기법인 DMFFD와 MWD 기법은 환자의 인접면과 교합면을 반영한 치아의 형태를 만들어 내기 위해 사용된다. 본 논문에서 제안한 방법은 인레이/온레이의 내면과 외면을 설계할 때 필요한 정보를 미리 설정하여 처리하므로 기존의 방법에 비해 짧은 시간에 보다 정확한 인레이/온레이를 설계할 수 있었다.

  • PDF

공작기계 열변형 보정을 위한 발열실험 방법에 관한 연구 (A Study on the Thermal Experiment for the Compensation of Thermal Deformation in Machine Tools)

  • 윤인준;김형식;고태조;김희술
    • 한국공작기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 2004
  • Thermal distortion is a critical issue in machine tools, especially in high speed machining. This is the reason why recent machine tools have thermal compensation function. To compensate thermal distortion, it is necessary to make a model that has some relationship between temperature and deformation. Various experimental methods ye widely been used in thermal test: constant spindle speed, unit step speed increase, random spindle speed, etc. This paper focuses on which type of spindle operation condition is good for thermal experiment. Also, experimental data is modeled using multiple linear regression models and compared each other to select a method. Consequently, it turned out at e condition of 75% constant of maximum spindle speed is good enough to generate temperature and distortion data.

미세조직 인자의 영향을 고려한 금속 소재의 동적변형 특성 향상에 관한 연구 (Toward Improving the Dynamic Deformation Properties of Metallic Materials via Role of Microstructure Factor)

  • 김양곤;황병철;이동근;고영건;이성학
    • 소성∙가공
    • /
    • 제30권5호
    • /
    • pp.247-254
    • /
    • 2021
  • This study reviews dynamic deformation behavior of ultra-fine-grained Al alloys, ultra-fine-grained conventional low carbon steel and dual phase steel and Zr-based amorphous alloys. Dynamic tests were conducted using a Kolsky bar then the test data was analyzed in relation to resultant microstructures, mechanical properties and propensity of adiabatic shear band. In addition, deformed microstructures and fracture surfaces were used to investigate the behavior of both the dynamic deformation and fracture, and adiabatic shear banding. As a result, increasing microstructural homogeneity, strain hardenability and forming multiple shear bands could be a better way to increase the fracture resistance under dynamic loading as the formation of adiabatic shear bands was reduced or prevented.

강판 형상비 및 판폭두께비에 따른 강판전단벽의 변형모드 및 이력특성 (Hysteretic Characteristics and Deformation Modes of Steel Plate Shear Walls According to Aspect Ratios and Width-to-Thickness Ratios)

  • 신동현
    • 한국공간구조학회논문집
    • /
    • 제24권1호
    • /
    • pp.37-45
    • /
    • 2024
  • Steel plate shear walls (SPSWs) have been recognized as an effective seismic-force resisting systems due to their excellent strength and stiffness characteristics. The infill steel plate in a SPSW is constrained by a boundary frame consisting of vertical and horizontal structural members. The main purpose of this study was to investigate deformation modes and hysteretic characteristics of steel plate shear walls (SPSWs) to consider the effects of their aspect ratios and width-to-thicness ratios. The finite element model (FEM) was establish in order to simulate cyclic responses of SPSWs which have the two-side clamped boundary condition and made of conventional steel grade. The stress distribution obtained from the FEA results demonstrated that the principal stresses on steel plate with large thickness-to-width ratio were more uniformly distributed along its horizontal cross section due to the formation of multiple struts.

삼축압축시험을 이용한 아스팔트 혼합물의 소성변형 파손모형 개발 (Development of Asphalt Concrete Rutting Model by Triaxial Compression Test)

  • 이관호;현성철
    • 한국방재학회 논문집
    • /
    • 제9권1호
    • /
    • pp.57-64
    • /
    • 2009
  • 본 연구의 목적은 국내 대표 아스팔트 혼합물의 소성변형특성을 평가하고, 이를 이용하여 소성변형을 예측할 수 있는 파손모형을 다중회귀분석을 이용하여 개발하는 것이다. 2가지 아스팔트 바인더와 5종의 골재입도를 이용하였고, 2개의 다른 공극률(6%, 10%)로 시편을 제작하였다. 시험은 30, 45, 60 온도에서 3가지 구속하중을 이용하여 삼축압축 반복재하시험을 수행하였다. 이를 이용하여 소성변형에 영향을 미치는 인자를 규명하고 소성변형 예측모델을 개발하고자 한다. 소성변형 시험의 결과를 이용한 소성변형 예측 모델을 다중회귀분석을 이용하여 제안하였으며 모델의 신뢰도를 분석하였다. 회귀분석을 이용한 소성변형 모델은 AASHTO 2002 설계법에서 제시한 예측식을 기본으로 소성변형에 영향을 미치는 인자인 온도, 하중재하횟수, 공극률을 주요 변수로 하였다. 이를 SPSS 통계프로그램을 이용하여 제시하였으며 실제 시험값과 모델의 예측값으로 신뢰도를 분석하였다.

시변 분절-관절 벡터를 통한 상대위치 추정시 변형관련 변수의 선정이 추정 정확도에 미치는 영향 (Effects of the Selection of Deformation-related Variables on Accuracy in Relative Position Estimation via Time-varying Segment-to-Joint Vectors)

  • 이창준;이정근
    • 센서학회지
    • /
    • 제31권3호
    • /
    • pp.156-162
    • /
    • 2022
  • This study estimates the relative position between body segments using segment orientation and segment-to-joint center (S2J) vectors. In many wearable motion tracking technologies, the S2J vector is treated as a constant based on the assumption that rigid body segments are connected by a mechanical ball joint. However, human body segments are deformable non-rigid bodies, and they are connected via ligaments and tendons; therefore, the S2J vector should be determined as a time-varying vector, instead of a constant. In this regard, our previous study (2021) proposed a method for determining the time-varying S2J vector from the learning dataset using a regression method. Because that method uses a deformation-related variable to consider the deformation of S2J vectors, the optimal variable must be determined in terms of estimation accuracy by motion and segment. In this study, we investigated the effects of deformation-related variables on the estimation accuracy of the relative position. The experimental results showed that the estimation accuracy was the highest when the flexion and adduction angles of the shoulder and the flexion angles of the shoulder and elbow were selected as deformation-related variables for the sternum-to-upper arm and upper arm-to-forearm, respectively. Furthermore, the case with multiple deformation-related variables was superior by an average of 2.19 mm compared to the case with a single variable.

Experimental research on seismic behavior of steel reinforced high-strength concrete short columns

  • Zhu, Weiqing;Jia, Jinqing;Zhang, Junguang
    • Steel and Composite Structures
    • /
    • 제25권5호
    • /
    • pp.603-615
    • /
    • 2017
  • This experimental research presents the seismic performance of steel reinforced high-strength concrete (SRHC) short columns. Eleven SRHC column specimens were tested under simulated earthquake loading conditions, including six short column specimens and five normal column specimens. The parameters studied included the axial load level, stirrup details and shear span ratio. The failure modes, critical region length, energy dissipation capacity and deformation capacity, stiffness and strength degradation and shear displacement of SRHC short columns were analyzed in detail. The effects of the parameters on seismic performance were discussed. The test results showed that SRHC short columns exhibited shear-flexure failure characteristics. The critical region length of SRHC short columns could be taken as the whole column height, regardless of axial load level. In comparison to SRHC normal columns, SRHC short columns had weaker energy dissipation capacity and deformation capacity, and experienced faster stiffness degradation and strength degradation. The decrease in energy dissipation and deformation capacity due to the decreasing shear span ratio was more serious when the axial load level was higher. However, SRHC short columns confined by multiple stirrups might possess good seismic behavior with enough deformation capacity (ultimate drift ratio ${\geq}2.5%$), even though a relative large axial load ratio (= 0.38) and relative small structural steel ratio (= 3.58%) were used, and were suitable to be used in tall buildings in earthquake regions.

High performance ultrafine-grained Ti-Fe-based alloys with multiple length-scale phases

  • Zhang, Lai-Chang
    • Advances in materials Research
    • /
    • 제1권1호
    • /
    • pp.13-29
    • /
    • 2012
  • In order to simultaneously enhance the strength and plasticity in nanostructured / ultrafine-grained alloys, a strategy of introducing multiple length scales into microstructure (or called bimodal composite microstructure) has been developed recently. This paper presents a brief overview of the alloy developement and the mechanical behavior of ultrafine-grained Ti-Fe-based alloys with different length-scale phases, i.e., micrometer-sized primary phases (dendrites or eutectic) embedded in an ultrafine-grained eutectic matrix. These ultrafine-grained titanium bimodal composites could be directly obtained through a simple single-step solidification process. The as-prepared composites exhibit superior mechanical properties, including high strength of 2000-2700 MPa, large plasticity up to 15-20% and high specific strength. Plastic deformation of the ultrafine-grained titanium bimodal composites occurs through a combination of dislocation-based slip in the nano-/ultrafine scale matrix and constraint multiple shear banding around the micrometer-sized primary phase. The microstructural charactersitcs associated to the mechanical behaivor have been detailed discussed.

Characterization of earthquake ground motion of multiple sequences

  • Moustafa, Abbas;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • 제3권5호
    • /
    • pp.629-647
    • /
    • 2012
  • Multiple acceleration sequences of earthquake ground motions have been observed in many regions of the world. Such ground motions can cause large damage to the structures due to accumulation of inelastic deformation from the repeated sequences. The dynamic analysis of inelastic structures under repeated acceleration sequences generated from simulated and recorded accelerograms without sequences has been recently studied. However, the characteristics of recorded earthquake ground motions of multiple sequences have not been studied yet. This paper investigates the gross characteristics of earthquake records of multiple sequences from an engineering perspective. The definition of the effective number of acceleration sequences of the ground shaking is introduced. The implication of the acceleration sequences on the structural response and damage of inelastic structures is also studied. A set of sixty accelerograms is used to demonstrate the general properties of repeated acceleration sequences and to investigate the associated structural inelastic response.

옥천대(沃天帶)의 변형특성(變形特性)과 그 형성(形成) 과정(過程) -충북(忠北) 남서단(南西端)을 예(例)로 하여- (The Deformation Properties and their Formative Processes in Ogcheon Terrain around Ogcheon Town, North Chungcheong Province, Korea)

  • 이병주;박봉순
    • 자원환경지질
    • /
    • 제16권2호
    • /
    • pp.111-123
    • /
    • 1983
  • The studied area is situated in tho southern part of the Ogcheon fold belt, where the "Ogcheon Group" is widespread with Jurassic and Cretaceous intrusions. The regional stratigraphy may be divided into three formations, the lower pebble bearing phyllitic, the middle dark grey phyllitic, and the upper black phyllitic formations. For the purposes of the present study, the area has been partitioned to three structural subareas based on major fold axes and fault line. The main subjects of the research have been discussed from two different points, multiple deformation and minor-micro fold styles. The former is analyzed by pebble elongation, folding and lineation in a pebbly formation as well as schistosity, crenulation cleavage and crenulated lineation in the phyllitic formation. The later describes the characteristic features of fold style in each formation and structural subarea. Although minor fold axes within broad pelitic rocks usually tend to trend northeast and to plunge northward, most of these were probably formed by two stages, first a similar fold phase and second a kink fold phase. Measured structural elements indicate that crenulation cleavage in phyllite formed parallel to fold axes of folded pebble followed a NE phase of first deformation and a fold axes of pebbles diagonal to bedding of phyllite are represented by a NW phase of a second deformation. Microscopically, quartz and mica grains form a micro fold enabling one to establish tectonic levels which occur in different deformation modes in each stratigraphic sequence. Microtextures such as crenulation cleavage, kink band, aggregate band of mica and pressure shadows of porphyroblast of quartz related to qarnet and staurolite may suggest the time relation of crystallization and tectonism. The result of this study may conform that three deformation phase, NE first phase-NE second phase-NW phase, occurred in the area.

  • PDF