• Title/Summary/Keyword: multiple corresponding analysis

Search Result 214, Processing Time 0.023 seconds

Damage identification in a wrought iron railway bridge using the inverse analysis of the static stress response under rail traffic loading

  • Sidali Iglouli;Nadir Boumechra;Karim Hamdaoui
    • Smart Structures and Systems
    • /
    • v.32 no.3
    • /
    • pp.153-166
    • /
    • 2023
  • Health monitoring of civil infrastructures, in particular, old bridges that are still in service, has become more than necessary, given the risk that a possible degradation or failure of these infrastructures can induce on the safety of users in addition to the resulting commercial and economic impact. Bridge integrity assessment has attracted significant research efforts over the past forty years with the aim of developing new damage identification methods applicable to real structures. The bridge of Ouled Mimoun (Tlemcen, Algeria) is one of the oldest railway structure in the country. It was built in 1889. This bridge, which is too low with respect to the level of the road, has suffered multiple shocks from various machines that caused considerable damage to its central part. The present work aims to analyze the stability of this bridge by identifying damages and evaluating the damage rate in different parts of the structure on the basis of a finite element model. The applied method is based on an inverse analysis of the normal stress responses that were calculated from the corresponding recorded strains, during the passage of a real train, by means of a set of strain gauges placed on certain elements of the bridge. The results obtained from the inverse analysis made it possible to successfully locate areas that were really damaged and to estimate the damage rate. These results were also used to detect an excessive rigidity in certain elements due to the presence of plates, which were neglected in the numerical reference model. In the case of the continuous bridge monitoring, this developed method will be a very powerful tool as a smart health monitoring system, allowing engineers to take in time decisions in the event of bridge damage.

Difference analysis of the collapse behaviors of the single-story beam-column assembly and multi-story planar frame

  • Zheng Tan;Wei-Hui Zhong;Bao Meng;Xing-You Yao;Yu-Hui Zheng;Yao Gao;Shi-Chao Duan
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.265-280
    • /
    • 2024
  • The collapse behavior observed in single-story beam-column assembly (SSBCA) do not accurately represent the actual overall stress characteristic of multi-story frame structure (MSFS) under column loss scenario owing to ignoring the interaction action among different stories, leading to a disconnection between the anti-collapse behaviors of "components" and "overall structures", that is, the anti-collapse performance of frame structures with two different structural scales has not yet formed a combined force. This paper conducts a numerical and theoretical study to explore the difference of the collapse behaviors of the SSBCA and MSFS, and further to reveal the internal force relationships and boundary constraints at beam ends of models SSBCA and MSFS. Based on the previous experimental tests, the corresponding refined numerical simulation models were established and verified, and comparative analysis on the resistant-collapse performance was carried out, based on the validated modeling methods with considering the actual boundary constraints, and the results illustrates that the collapse behaviors of the SSBCA and MSFS is not a simple multiple relationship. Through numerical simulation and theoretical analysis, the development laws of internal force in each story beam under different boundary constraints was clarified, and the coupling relationship between the bending moment at the most unfavorable section and axial force in the composite beam of different stories of multi story frames with weld cover-plated flange connections was obtained. In addition, considering the effect of the yield performance of adjacent columns on the anti-collapse bearing capacities of the SSBCA and MSFS during the large deformation stages, the calculation formula for the equivalent axial stiffness at the beam ends of each story were provided.

Study on the influence of structural and ground motion uncertainties on the failure mechanism of transmission towers

  • Zhaoyang Fu;Li Tian;Xianchao Luo;Haiyang Pan;Juncai Liu;Chuncheng Liu
    • Earthquakes and Structures
    • /
    • v.26 no.4
    • /
    • pp.311-326
    • /
    • 2024
  • Transmission tower structures are particularly susceptible to damage and even collapse under strong seismic ground motions. Conventional seismic analyses of transmission towers are usually performed by considering only ground motion uncertainty while ignoring structural uncertainty; consequently, the performance evaluation and failure prediction may be inaccurate. In this context, the present study numerically investigates the seismic responses and failure mechanism of transmission towers by considering multiple sources of uncertainty. To this end, an existing transmission tower is chosen, and the corresponding three-dimensional finite element model is created in ABAQUS software. Sensitivity analysis is carried out to identify the relative importance of the uncertain parameters in the seismic responses of transmission towers. The numerical results indicate that the impacts of the structural damping ratio, elastic modulus and yield strength on the seismic responses of the transmission tower are relatively large. Subsequently, a set of 20 uncertainty models are established based on random samples of various parameter combinations generated by the Latin hypercube sampling (LHS) method. An uncertainty analysis is performed for these uncertainty models to clarify the impacts of uncertain structural factors on the seismic responses and failure mechanism (ultimate bearing capacity and failure path). The numerical results show that structural uncertainty has a significant influence on the seismic responses and failure mechanism of transmission towers; different possible failure paths exist for the uncertainty models, whereas only one exists for the deterministic model, and the ultimate bearing capacity of transmission towers is more sensitive to the variation in material parameters than that in geometrical parameters. This research is expected to provide an in-depth understanding of the influence of structural uncertainty on the seismic demand assessment of transmission towers.

The effects of meteorological factors on the sales volume of apparel products - Focused on the Fall/Winter season - (기상요인이 의류제품 판매량에 미치는 영향 - F/W 판매데이터(9월~익년 2월)를 근거로 -)

  • Kim, Eun Hie;Hwangbo, Hyunwoo;Chae, Jin Mie
    • The Research Journal of the Costume Culture
    • /
    • v.25 no.2
    • /
    • pp.117-129
    • /
    • 2017
  • The purpose of this study was to investigate meteorological factors' effects on clothing sales based on empirical data from a leading apparel company. The daily sales data were aggregated from "A" company's store records for the Fall/Winter season from 2012 to 2015. Daily weather data corresponding to sales volume data were collected from the Korea Meteorological Administration. The weekend effect and meteorological factors including temperature, wind, humidity, rainfall, fine dust, sea level pressure, and sunshine hours were selected as independent variables to calculate their effects on A company's apparel sales volume. The analysis used a SAS program including correlation analysis, t-test, and multiple-regression analysis. The study results were: First, the weekend effect was the most influential factor affecting sales volume, followed by fine dust and temperature. Second, there were significant differences in the independent variables'effects on sales volume according to the garments' classification. Third, temperature significantly affected outer garments'sales volume, while top garments' sales volume was not influenced significantly. Fourth, humidity, sea level pressure and sunshine affected sales volume partly according to the garments' item. This study can provide proof of significant relationships between meteorological factors and the sales volume of garments, which will serve well to establish better inventory strategies.

A Study on the Success Factors of the Foodservice Franchise Business (외식 사업 프랜차이즈 사업의 성공 요인에 관한 연구)

  • Kim, Keun-Jong
    • Culinary science and hospitality research
    • /
    • v.15 no.2
    • /
    • pp.219-230
    • /
    • 2009
  • The purpose of this research was to investigate the success factors of the foodservice franchise business. This study examined relevant literatures, set up some hypotheses to solve main questionable consideration and made a corresponding empirical analysis. For the empirical analysis, a questionnaire survey was applied to ttotal 120 franchisers who have operated franchise business around Seoul. The result from the multiple regression model shows that the success of the franchise business is influenced by the operating system, the brand system, the educational system, and the franchisees' activities. As mentioned in the literature review and empirical analysis, it is found that the above mentioned four systems are equally affected by franchisers' success factors. The limits of this study include the fact that it has selected and researched around Seoul and four factors. Future research should be done from the perspective of such factors as culture, economy, region, menu, service and so on.

  • PDF

An Empirical Research on the Effect of the Environmental Adaptation and the Implementation of Strategies on the Business Performance in Korean Shipping Companies (외항선사(外航船社)의 환경대응력(環境對應力)과 전략실행(戰略實行)이 경영성과(經營成果)에 미치는 영향(影響)에 관한 실증연구(實證硏究))

  • Kim, Myung-Jae;Nam, Jin-Hyun;Ahn, Ki-Myung
    • Journal of Navigation and Port Research
    • /
    • v.34 no.8
    • /
    • pp.659-667
    • /
    • 2010
  • In this study, we examine features of marine transport environment which shipping companies are facing, analyze the ability to cope with this environment, and present the relationship between the ability and business performances. Then, we demonstrate that diagnosis of shipping environment in the global marine transport environment and preparing to it is very important. Also, we present that the ability to prepare is the main factor to decide the competitive power of the company. This study has a meaning in that the importance of business activities related to environment such like diagnosis of environment, analyzing, management, adaptation, and prediction is presented. Besides, the value of this study is that we analyze the relationship between corresponding ability, strategic execution process and business performance in general.

Determinants of student course evaluation using hierarchical linear model (위계적 선형모형을 이용한 강의평가 결정요인 분석)

  • Cho, Jang Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1285-1296
    • /
    • 2013
  • The fundamental concerns of this paper are to analyze the effects of student course evaluation using subject characteristic and student characteristic variables. We use a 2-level hierarchical linear model since the data structure of subject characteristic and student characteristic variables is multilevel. Four models we consider are as follows; (1) null model, (2) random coefficient model, (3) mean as outcomes model, (4) intercepts and slopes as outcomes model. The results of the analysis were given as follows. First, the result of null model was that subject characteristics effects on course evaluation had much larger than student characteristics. Second, the result of conditional model specifying subject and student level predictors revealed that class size, grade, tenure, mean GPA of the class, native class for level-1, and sex, department category, admission method, mean GPA of the student for level-2 had statistically significant effects on course evaluation. The explained variance was 13% in subject level, 13% in student level.

Critical earthquake input energy to connected building structures using impulse input

  • Fukumoto, Yoshiyuki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1133-1152
    • /
    • 2015
  • A frequency-domain method is developed for evaluating the earthquake input energy to two building structures connected by viscous dampers. It is shown that the earthquake input energies to respective building structures and viscous connecting dampers can be defined as works done by the boundary forces between the subsystems on their corresponding displacements. It is demonstrated that the proposed energy transfer function is very useful for clear understanding of dependence of energy consumption ratios in respective buildings and connecting viscous dampers on their properties. It can be shown that the area of the energy transfer function for the total system is constant regardless of natural period and damping ratio because the constant Fourier amplitude of the input acceleration, relating directly the area of the energy transfer function to the input energy, indicates the Dirac delta function and only an initial velocity (kinetic energy) is given in this case. Owing to the constant area property of the energy transfer functions, the total input energy to the overall system including both buildings and connecting viscous dampers is approximately constant regardless of the quantity of connecting viscous dampers. This property leads to an advantageous feature that, if the energy consumption in the connecting viscous dampers increases, the input energies to the buildings can be reduced drastically. For the worst case analysis, critical excitation problems with respect to the impulse interval for double impulse (simplification of pulse-type impulsive ground motion) and multiple impulses (simplification of long-duration ground motion) are considered and their solutions are provided.

Numerical Analysis of Shear Stresses in Framed Tube Structures with Internal Tube(s) (내부튜브가 있는 골조 튜브 구조물의 전단응력에 대한 수치해석)

  • Lee, Kang-Kun;Lee, Lee-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.511-521
    • /
    • 2002
  • A simple numerical modelling technique is proposed for estimating the shear stress distribution in beams of framed tube structures with multiple internal tubes. The structures arc analysed using a continuum approach in which each tube is individually modelled by a tube beam that accounts for the flexural and shear deformations, as well as the shear lag effects. The numerical analysis of shear stress is based on the mathematical analogy in conjunction with the elastic theory By simplifying assumptions regarding the form of strain distributions in external and internal tubes, the shear stress distributions are expressed in terms of a series of lineal functions of the second moments of area of the structures and the corresponding geometric and material properties, as well as the applied loads. Previous studies for axial stresses and shear lag phenomenon are further developed lot the numerical analysis of shear stresses in the tubes. The simplicity and accuracy of the proposed method are demonstrated through the solutions of throe numerical examples.

High-Reliable Classification of Multiple Induction Motor Faults using Robust Vibration Signatures in Noisy Environments based on a LPC Analysis and an EM Algorithm (LPC 분석 기법 및 EM 알고리즘 기반 잡음 환경에 강인한 진동 특징을 이용한 고 신뢰성 유도 전동기 다중 결함 분류)

  • Kang, Myeongsu;Jang, Won-Chul;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.21-30
    • /
    • 2014
  • The use of induction motors has been recently increasing in a variety of industrial sites, and they play a significant role. This has motivated that many researchers have studied on developing fault detection and classification systems of induction motors in order to reduce economical damage caused by their faults. To early identify induction motor faults, this paper effectively estimates spectral envelopes of each induction motor fault by utilizing a linear prediction coding (LPC) analysis technique and an expectation maximization (EM) algorithm. Moreover, this paper classifies induction motor faults into their corresponding categories by calculating Mahalanobis distance using the estimated spectral envelopes and finding the minimum distance. Experimental results show that the proposed approach yields higher classification accuracies than the state-of-the-art conventional approach for both noiseless and noisy environments for identifying the induction motor faults.