• Title/Summary/Keyword: multiple classification analysis

Search Result 460, Processing Time 0.03 seconds

Classification of Multi-temporal SAR Data by Using Data Transform Based Features and Multiple Classifiers (자료변환 기반 특징과 다중 분류자를 이용한 다중시기 SAR자료의 분류)

  • Yoo, Hee Young;Park, No-Wook;Hong, Sukyoung;Lee, Kyungdo;Kim, Yeseul
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.205-214
    • /
    • 2015
  • In this study, a novel land-cover classification framework for multi-temporal SAR data is presented that can combine multiple features extracted through data transforms and multiple classifiers. At first, data transforms using principle component analysis (PCA) and 3D wavelet transform are applied to multi-temporal SAR dataset for extracting new features which were different from original dataset. Then, three different classifiers including maximum likelihood classifier (MLC), neural network (NN) and support vector machine (SVM) are applied to three different dataset including data transform based features and original backscattering coefficients, and as a result, the diverse preliminary classification results are generated. These results are combined via a majority voting rule to generate a final classification result. From an experiment with a multi-temporal ENVISAT ASAR dataset, every preliminary classification result showed very different classification accuracy according to the used feature and classifier. The final classification result combining nine preliminary classification results showed the best classification accuracy because each preliminary classification result provided complementary information on land-covers. The improvement of classification accuracy in this study was mainly attributed to the diversity from combining not only different features based on data transforms, but also different classifiers. Therefore, the land-cover classification framework presented in this study would be effectively applied to the classification of multi-temporal SAR data and also be extended to multi-sensor remote sensing data fusion.

Splitting Decision Tree Nodes with Multiple Target Variables (의사결정나무에서 다중 목표변수를 고려한)

  • 김성준
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.243-246
    • /
    • 2003
  • Data mining is a process of discovering useful patterns for decision making from an amount of data. It has recently received much attention in a wide range of business and engineering fields Classifying a group into subgroups is one of the most important subjects in data mining Tree-based methods, known as decision trees, provide an efficient way to finding classification models. The primary concern in tree learning is to minimize a node impurity, which is evaluated using a target variable in the data set. However, there are situations where multiple target variables should be taken into account, for example, such as manufacturing process monitoring, marketing science, and clinical and health analysis. The purpose of this article is to present several methods for measuring the node impurity, which are applicable to data sets with multiple target variables. For illustrations, numerical examples are given with discussion.

  • PDF

Classification of Land Cover on Korean Peninsula Using Multi-temporal NOAA AVHRR Imagery

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.381-392
    • /
    • 2003
  • Multi-temporal approaches using sequential data acquired over multiple years are essential for satisfactory discrimination between many land-cover classes whose signatures exhibit seasonal trends. At any particular time, the response of several classes may be indistinguishable. A harmonic model that can represent seasonal variability is characterized by four components: mean level, frequency, phase and amplitude. The trigonometric components of the harmonic function inherently contain temporal information about changes in land-cover characteristics. Using the estimates which are obtained from sequential images through spectral analysis, seasonal periodicity can be incorporates into multi-temporal classification. The Normalized Difference Vegetation Index (NDVI) was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula for 1996 ~ 2000 using a dynamic technique. Land-cover types were then classified both with the estimated harmonic components using an unsupervised classification approach based on a hierarchical clustering algorithm. The results of the classification using the harmonic components show that the new approach is potentially very effective for identifying land-cover types by the analysis of its multi-temporal behavior.

Selection of markers in the framework of multivariate receiver operating characteristic curve analysis in binary classification

  • Sameera, G;Vishnu, Vardhan R
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.2
    • /
    • pp.79-89
    • /
    • 2019
  • Classification models pertaining to receiver operating characteristic (ROC) curve analysis have been extended from univariate to multivariate setup by linearly combining available multiple markers. One such classification model is the multivariate ROC curve analysis. However, not all markers contribute in a real scenario and may mask the contribution of other markers in classifying the individuals/objects. This paper addresses this issue by developing an algorithm that helps in identifying the important markers that are significant and true contributors. The proposed variable selection framework is supported by real datasets and a simulation study, it is shown to provide insight about the individual marker's significance in providing a classifier rule/linear combination with good extent of classification.

Automatic Classification of Drone Images Using Deep Learning and SVM with Multiple Grid Sizes

  • Kim, Sun Woong;Kang, Min Soo;Song, Junyoung;Park, Wan Yong;Eo, Yang Dam;Pyeon, Mu Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.407-414
    • /
    • 2020
  • SVM (Support vector machine) analysis was performed after applying a deep learning technique based on an Inception-based model (GoogLeNet). The accuracy of automatic image classification was analyzed using an SVM with multiple virtual grid sizes. Six classes were selected from a standard land cover map. Cars were added as a separate item to increase the classification accuracy of roads. The virtual grid size was 2-5 m for natural areas, 5-10 m for traffic areas, and 10-15 m for building areas, based on the size of items and the resolution of input images. The results demonstrate that automatic classification accuracy can be increased by adopting an integrated approach that utilizes weighted virtual grid sizes for different classes.

Classification performance comparison of inductive learning methods (귀납적 학습방법들의 분류성능 비교)

  • 이상호;지원철
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1997.10a
    • /
    • pp.173-176
    • /
    • 1997
  • In this paper, the classification performances of inductive learning methods are investigated using the credit rating data. The adopted classifiers are Multiple Discriminant Analysis (MDA), C4.5 of Quilan, Multi-Layer Perceptron (MLP) and Cascade Correlation Network (CCN). The data used in this analysis is obtained using the publicly announced rating reports from the three korean rating agencies. The performances of 4 classifiers are analyzed in term of prediction accuracy. The results show that no classifier is dominated by the other classifiers.

  • PDF

열거식 계층분류체계에 분석합성식 기법의 도입에 관한 연구-KDC를 중심으로

  • 도태현
    • Journal of Korean Library and Information Science Society
    • /
    • v.29
    • /
    • pp.241-272
    • /
    • 1998
  • The purpose of this paper is to examine the analytic-assembling(faceted analysis) methods applied in enumerative-hierarchical classification schemes. (mainly in KDC) The methods are summarized as follows : 1. For the enumerative-hierarchical classification schemes, in principle the subjects are divided into subdivisions by only one facet at the same level, and step by step. However some subjects, for example 'library and information science' 'education' and others in KDC, are divided into subdivisions by multiple facets at same level like Colon Classification. 2. Most of enumerative-hierarchical classification schemes have various kinds of auxiliary tables, such as standard subdivisions, areas, periods, and languages. Each of them is considered as foci by a facet applied to subdivide all kinds of subjects or some special subjects into lower level. 3. To classify the compound subjects with phase relation, KDC provides ready-made classification numbers or notes that says 'divide by 001-999'(whole subjects) of 'divide by xxx-xxx'(limited scope of subjects). The ready-made compound subjects, or subdividing by whole or limited scope of subjects are similar to representation of phase relation in Colon Classification. Yet these analytic-assembling methods in KDC are needed to be supplemented and amended. Subdividing methods for faceted analysis have to be unified through the whole schedule. The auxiliary tables should be enlarged and subdivided more specifically. And for representation of phase relation, the linking signs can be useful in KDC as well as UDC and other analytic-assembling classification schemes like Colon Classification.

  • PDF

Cross platform classification of microarrays by rank comparison

  • Lee, Sunho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.2
    • /
    • pp.475-486
    • /
    • 2015
  • Mining the microarray data accumulated in the public data repositories can save experimental cost and time and provide valuable biomedical information. Big data analysis pooling multiple data sets increases statistical power, improves the reliability of the results, and reduces the specific bias of the individual study. However, integrating several data sets from different studies is needed to deal with many problems. In this study, I limited the focus to the cross platform classification that the platform of a testing sample is different from the platform of a training set, and suggested a simple classification method based on rank. This method is compared with the diagonal linear discriminant analysis, k nearest neighbor method and support vector machine using the cross platform real example data sets of two cancers.

A Rule-Based Image Classification Method for Analysis of Urban Development in the Capital Area (수도권 도시개발 분석을 위한 규칙기반 영상분류)

  • Lee, Jin-A;Lee, Sung-Soon
    • Spatial Information Research
    • /
    • v.19 no.6
    • /
    • pp.43-54
    • /
    • 2011
  • This study proposes a rule-based image classification method for the time-series analysis of changes in the land surface of the Seongnam-Yongin area using satellite-image data from 2000 to 2009. In order to identify the change patterns during each period, 11 classes were employed in accordance with statistical/mathematic rules. A generalized algorithm was used so that the rules could be applied to the unsupervised-classification method that does not establish any training sites. The results showed that the urban area of the object increased by 145% due to housing-site development. The image data from 2009 had a classification accuracy of 98%. For method verification, the results were compared to land-cover changes through Post-classification comparison. The maximum utilization of the available data within multiple images and the optimized classification allowed for an improvement in the classification accuracy. The proposed rule-based image-classification method is expected to be widely employed for the time-series analysis of images to produce a thematic map for urban development and to monitor urban development and environmental change.

The Clustering Application of Spectral Characteristics of Rock Samples from Ulsan (울산 지역 암석 시료의 스펙트럼 특성과 이의 Clustering 응용)

  • 박종남;김지훈
    • Korean Journal of Remote Sensing
    • /
    • v.6 no.2
    • /
    • pp.115-133
    • /
    • 1990
  • Study was made on the spectral characteristics of rock samples including bentonites collected from the northern Ulsan area. The geology of the area consists mainly of sediments of the Kyongsang Series and Bulguksa granite, the Tertiary volcanics, andesites and tuffs. Relative reflectances of meshed samples(2.5~10mm) to BaSO$_4$ are measured at 6 Landsat TM spectral windows (excluding the thermal band) with HHRR, and their reflection charactristics were analysed. In addition, three different data selection schemes including the Eulidean distance, multiple regression, and PCA weight methods were applied to the 30 TM ratio channels, derived from the above 6 bands. The selected data sets were subject to two unsupervised classification techniques(FA and ISODATA) in order to compare the effectiveness for classification of particularly bentonite from others. As a result, in ISODATA analysis the multiple regression model shows the best, followed by the Euliean distances one. The PCA weight model seems to show some confusion. In FA, though difficult for quantitative analysis, the best still seems to be the regression model. Among ratio bands, rations of band 7 or 5 against other bands represent the best contribution in classification of bentonites from others.