• 제목/요약/키워드: multiphysical analysis

검색결과 8건 처리시간 0.016초

파도를 이용한 압전 에너지 수확 장치의 설계 및 해석 (Design and Analysis of Piezoelectric Energy Harvesting Device Using Waves)

  • 나영민;이현석;강태훈;박종규;박태곤
    • 한국재료학회지
    • /
    • 제25권10호
    • /
    • pp.523-530
    • /
    • 2015
  • Electricity generation through fossil fuels has caused environmental pollution. To solve this problem, research on new renewable energy (solar, wind, geothermal heat, etc.) to replace fossil fuels is in progress. These devices are able to consistently generate power. However, they have many drawbacks, such as high installation costs and limitations in possible set-up environments. Thus, piezoelectric harvesting technology, which is able to overcome the limitations of existing energy technologies, is actively being studied. Piezoelectric harvesting technology uses the piezoelectric effect which occurs in crystals that generate voltage when stress is applied. Therefore, it has advantages such as a wider installation base and lower technological cost. In this study, a piezoelectric energy harvesting device based on constant wave motion was investigated. This device can regenerate electricity in a constant turbulent flow in the middle of the sea. The components of the device are circuitry, a steel bar, an bimorph piezoelectric element and buoyancy elements. In addition, a multiphysical analysis coupled with the structure and piezoelectric elements was conducted to estimate the performance of the device. With this piezoelectric energy harvesting device, the displacement and electric power were analyzed.

An effective solution of electro-thermo-structural problem of uni-axially graded material

  • Murin, J.;Kutis, V.;Masny, M.
    • Structural Engineering and Mechanics
    • /
    • 제28권6호
    • /
    • pp.695-713
    • /
    • 2008
  • The aim of this contribution is to present a new link/beam finite element suitable for electrothermo-structural analysis of uni-axially graded materials. Continuous polynomial variation of geometry and material properties will be considered. The element matrix and relations for solution of Joule's heat (and its distribution to the element nodes) have been established in the sense of a sequence method of a coupled problem solution. The expression for the solution of nodal forces caused by a continuously distributed temperature field has also been derived. The theoretical part of this contribution is completed by numerical validation, which proves the high accuracy and effectiveness of the proposed element. The results of the performed experiments are compared with those obtained using the more expensive multiphysical link element and solid element of the FEM program Ansys. The proposed finite element could be used not only in the multiphysical analysis of the current paths and actuators but also in analysis of other 1D construction parts made of composite or uni-axially graded materials.

Acoustic responses of natural fibre reinforced nanocomposite structure using multiphysics approach and experimental validation

  • Satankar, Rajesh Kumar;Sharma, Nitin;Ramteke, Prashik Malhari;Panda, Subtra Kumar;Mahapatra, Siba Shankar
    • Advances in nano research
    • /
    • 제9권4호
    • /
    • pp.263-276
    • /
    • 2020
  • In this article, the acoustic responses of free vibrated natural fibre-reinforced polymer nanocomposite structure have been investigated first time with the help of commercial package (ANSYS) using the multiphysical modelling approach. The sound relevant data of the polymeric structure is obtained by varying weight fractions of the natural nanofibre within the composite. Firstly, the structural frequencies are obtained through a simulation model prepared in ANSYS and solved through the static structural analysis module. Further, the corresponding sound data within a certain range of frequencies are evaluated by modelling the medium through the boundary element steps with adequate coupling between structure and fluid via LMS Virtual Lab. The simulation model validity has been established by comparing the frequency and sound responses with published results. In addition, sets of experimentation are carried out for the eigenvalue and the sound pressure level for different weight fractions of natural fibre and compared with own simulation data. The experimental frequencies are obtained using own impact type vibration analyzer and recorded through LABVIEW support software. Similarly, the noise data due to the harmonically excited vibrating plate are recorded through the available Array microphone (40 PH and serial no: 190569). The numerical results and subsequent experimental comparison are indicating the comprehensiveness of the presently derived simulation model. Finally, the effects of structural design parameters (thickness ratio, aspect ratio and boundary conditions) on the acoustic behaviour of the natural-fibre reinforced nanocomposite are computed using the present multiphysical model and highlighted the inferences.

Buckling analysis of smart beams based on higher order shear deformation theory and numerical method

  • Talebizadehsardari, Pouyan;Eyvazian, Arameh;Azandariani, Mojtaba Gorji;Tran, Trong Nhan;Rajak, Dipen Kumar;Mahani, Roohollah Babaei
    • Steel and Composite Structures
    • /
    • 제35권5호
    • /
    • pp.635-640
    • /
    • 2020
  • The buckling analysis of the embedded sinusoidal piezoelectric beam is evaluated using numerical method. The smart beam is subjected to external voltage in the thickness direction. Elastic medium is simulated with two parameters of spring and shear. The structure is modelled by sinusoidal shear deformation theory (SSDT) and utilizing energy method, the final governing equations are derived on the basis of piezo-elasticity theory. In order to obtaining the buckling load, the differential quadrature method (DQM) is used. The obtained results are validated with other published works. The effects of beam length and thickness, elastic medium, boundary condition and external voltage are shown on the buckling load of the structure. Numerical results show that with enhancing the beam length, the buckling load is decreased. In addition, applying negative voltage, improves the buckling load of the smart beam.

Free vibration of FG-GPLRC spherical shell on two parameter elastic foundation

  • Eyvazian, Arameh;Musharavati, Farayi;Talebizadehsardari, Pouyan;Sebaey, Tamer A.
    • Steel and Composite Structures
    • /
    • 재36권6호
    • /
    • pp.711-727
    • /
    • 2020
  • In the present research, the free vibration analysis of functionally graded (FG) nanocomposite deep spherical shells reinforced by graphene platelets (GPLs) on elastic foundation is performed. The elastic foundation is assumed to be Winkler-Past ernak-type. It is also assumed that graphaene platelets are randomly oriented and uniformly dispersed in each layer of the nanocomposite shell. Volume fraction of the graphene platelets as nanofillers may be different in the layers. The modified HalpinTsai model is used to approximate the effective mechanical properties of the multilayer nanocomposite. With the aid of the first order shear deformation shell theory and implementing Hamilton's principle, motion equations are derived. Afterwards, the generalized differential quadrature method (GDQM) is utilized to study the free vibration characteristics of FG-GPLRC spherical shell. To assess the validity and accuracy of the presented method, the results are compared with the available researches. Finally, the natural frequencies and corresponding mode shapes are provided for different boundary conditions, GPLs volume fraction, types of functionally graded, elastic foundation coefficients, opening angles of shell, and thickness-to-radius ratio.

압출 적층 방식의 알루미늄 용융기의 설계 및 해석 (Design and Analysis of Aluminum Melting Machine in Fused Deposition Modeling Method)

  • 이현석;나영민;강태훈;박종규;박태곤
    • 한국기계가공학회지
    • /
    • 제14권4호
    • /
    • pp.62-72
    • /
    • 2015
  • Interest in three-dimensional (3D) printing processes has grown significantly, and several types have been developed. These 3D printing processes are classified as Selective Laser Sintering (SLS), Stereo-Lithography Apparatus (SLA), and Fused Deposition Modeling (FDM). SLS can be applied to many materials, but because it uses a laser-based material removal process, it is expensive. SLA enables fast and precise manufacturing, but available materials are limited. FDM printing's benefits are its reasonable price and easy accessibility. However, metal printing using FDM can involve technical problems, such as suitable component supply or the thermal expansion of the heating part. Thus, FDM printing primarily uses materials with low melting points, such as acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA) resin. In this study, an FDM process for enabling metal printing is suggested. Particularly, the nozzle and heatsink for this process are focused for stable printing. To design the nozzle and heatsink, multi-physical phenomena, including thermal expansion and heat transfer, had to be considered. Therefore, COMSOL Multiphysics, an FEM analysis program, was used to analyze the maximum temperature, thermal expansion, and principal stress. Finally, its performance was confirmed through an experiment.

해조류를 모방한 압전 에너지 수확 장치의 설계와 실험 (The Design and Experiment of Piezoelectric Energy-Harvesting Device Imitating Seaweed)

  • 강태훈;나영민;이현석;박종규;박태곤
    • 한국기계가공학회지
    • /
    • 제14권4호
    • /
    • pp.73-84
    • /
    • 2015
  • Electricity generation using fossil fuels has caused environmental pollution. To solve this problem, research on new renewable energy sources (solar, wind power, geothermal heat, etc.) to replace fossil fuels is ongoing. These devices are able to generate power consistently. However, they have many weaknesses, such as high installation costs and limits to possible setup environments. Therefore, an active study on piezoelectric harvesting technology that is able to surmount the limitations of existing energy technologies is underway. Piezoelectric harvesting technology uses the piezoelectric effect, which occurs in crystals that generate voltage when stress is applied. Therefore, it has advantages, such as a wider installation base and lower technological costs. In this study, a piezoelectric harvesting device imitating seaweed, which has a consistent motion caused by fluid, is used. Thus, it can regenerate electricity at sea or on a bridge pillar, which has a constant turbulent flow. The components of the device include circuitry, springs, an electric generator, and balancing and buoyancy elements. Additionally, multiphysics analysis coupled with fluid, structure, and piezoelectric elements is conducted using COMSOL Multiphysics to evaluate performance. Through this program, displacement and electric power were analyzed, and the actual performance was confirmed by the experiment.

최적화기법에 의한 나뭇잎 그물맥 시뮬레이션 (Simulation of Woody Leaf Netted Venation Based on Optimization Technique)

  • 첸레이;리웨이정;장강원;백태현
    • 대한기계학회논문집B
    • /
    • 제37권4호
    • /
    • pp.323-329
    • /
    • 2013
  • 본 연구에서는 나뭇잎 그물맥 구조를 시뮬레이션하기 위해 잎 그물맥을 상 하 보강 박막판과 비압축성 유체가 흐르는 중간층 구조로 모델링하여 다중물리 현상으로 간주하고, 위상 최적화법을 다중물리 설계영역에 적용하였다. Mindlin-Reissner 판 모델에 기인한 횡방향 전단잠금 문제를 해결하기 위해 P1 비적합 요소와 선택 감소 적분법을 이용하였다. 다시-스토크스 유체 유동 채널에 대해 최적설계법을 적용하여 유동 시스템의 다중물리 모델을 해석하였으며, 잎의 그물맥 시뮬레이션을 수행하였다. 계산된 최적형상을 잎의 자연 그물 맥 패턴과 비교하였으며 비슷한 형상을 얻었다. 이와 같은 학제간 연구를 통해 나무 잎 그물맥 시스템을 이해할 수 있는 계기가 될 것으로 사료된다.